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e Vision-language datasets have been growing increasingly large,

reaching millions or even billions of samples.

® The vision-language pairs are often excessively noisy and complex.

Data = Information + Irrelevant Data | 1]

® Heavy computational cost
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® Bi-trajectory matching: Separately considers two trajectories
to capture complex vision-text interactions via contrastive loss.
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® Baseline comparisons (Here we only report R@1)

TR
Coreset Selection
Dataset #pairs | R H K F | Dist (ours)
Flick'30K 100 | 1.3 1.1 0.6 12| 9.9 +0.3 ®Different vision encoders
COCO 100 0.8 0.8 14 07 254+ 0.3
Random (R), Herding (H), K-center (K) Forgetting (F) Vision Model IR IR
NFNet 9.9 4.7
. . . VIT LoRA 104 54
. —
With and without LoRA on ViT NF RosNets0 | 65 346
Without LoRA | With LoRA NF_RegNet 7.8 3.28
Dataset #Pairs | TR IR TR IR
: 100 1.5 0.6 104 54
Fhicke3OK 1000 | 3.3 1.5 158 8.1

® Cross-architecture generalization

¢ Different language encoders

— Language Model | TR IR
Distill Evaluate TR IR BERT 59 47
NFNet 99 4.7 CLIP 314 171
NF-ResNet50 | 5.2 4.5
NFNet NF-RegNet | 3.6 2.5
viT 3.1 2.3
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How can we distill the most critical information
from vision-language datasets?

Image-Label Vision-Language

labels distilled images distilled text embeds distilled images

“a cat figurine set in the

cat bathroom by a toilet”
“dog” brown dog running )
through shallow water
“surfer surfing in a
“bird” beautiful with birds

around and waves
with beautiful texture

® Prior works distill each class separately [2, 3].
e We distill vision-language datasets that lack discrete classes.

¢ Low-rank adaptation matching: makes it computationally
feasible for training with more complex models (e.g., ViTs).

¢ Text distillation: use continuous sentence embeddings to
overcome the difficulties of optimizing discrete text directly.

Training multiple models for T epochs on the full dataset D.
Obtaining expert training trajectories 7* = {0 }7_,.

® Training student models on current distilled
dataset D = {(&;,4;)};., with contrastive loss.

® Update the current dlstllled dataset based on the
bi-trajectory matching loss of the student models’
parameter trajectories and the expert trajectories.
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Increasing learning rate will change images more noticeably in
distilled datasets but doesn't lead to performance improvement.

® Single-modality vs. multi-modality

T: text-only, I: image-only

TR IR
T 13 05 Takeaway: Distillation would be impossible
1 |35 16 Ifwesolelyoptimize one modality.
Ours | 9.9 4.7 image component plays a more critical role

in the distilled dataset.
® Image-Text Pair Initialization

Real Text TR IR

Real Image

Takeaway:
v (1)411 0.1 Initializing texts from scratch
v o 139 XX Initializing images from scratch
v v 99 4.7
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