

**Workshop on Reliable and Interactable** 

**World Models** 

# Where Is Motion From? Scalable Motion Attribution for Video Generation Models

Xindi Wu<sup>1, 2</sup>, Despoina Paschalidou<sup>1</sup>, Jun Gao<sup>1</sup>, Antonio Torralba<sup>3</sup>, Laura Leal-Taixé<sup>1</sup>, Olga Russakovsky<sup>2</sup>, Sanja Fidler<sup>1</sup>, Jonathan Lorraine<sup>1</sup> <sup>1</sup>NVIDIA, <sup>2</sup>Princeton University, <sup>3</sup>MIT CSAIL



### **Motivation**

Despite rapid progress in video generation, how data shapes motion quality remains poorly understood.

Scale

Modern,

large-scale

models &

datasets

### **Key Goals**

### Focus on **Efficiently** Motion

Separate motion from static appearance Curation

Identify clips that improve motion quality

Guide

### **Our Solution: MOTIVE**

**MOtion Training Influence for Video gEneration** 

### **Problem Formulation**

Given a query video and finetuning dataset, assign each training clip a motion-aware influence **score** to quantify its contribution to target generation

### **Method Components**

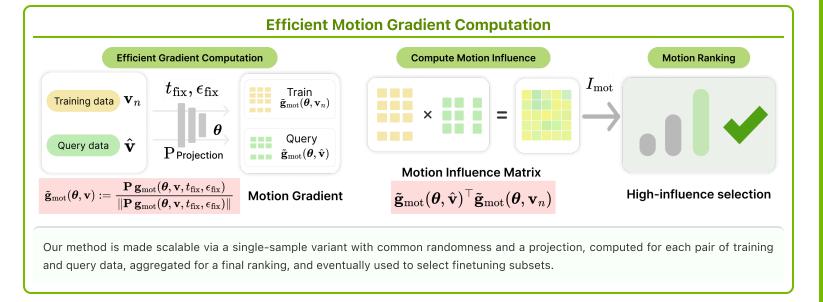
### 1. Efficient Motion Gradient Computation

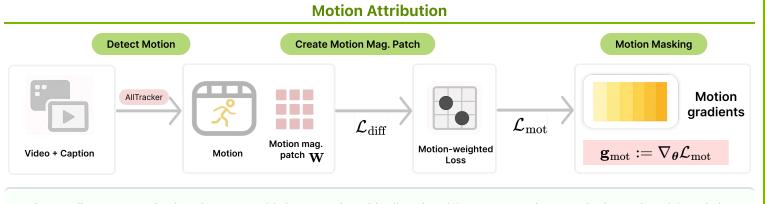
- Single-Sample Estimator
- Structured Projections (Fastfood)

### 2. Motion Attribution

- Detect motion between frames w. AllTracker
- Create motion magnitude patches highlighting dynamic areas
- · Apply motion-weighted loss to focus on moving regions and compute motion-specific gradients

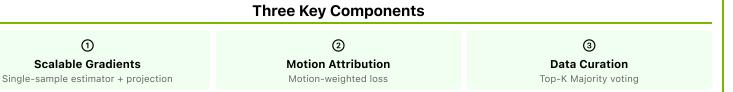
# Which training clips drive the motion in a video generation sample?



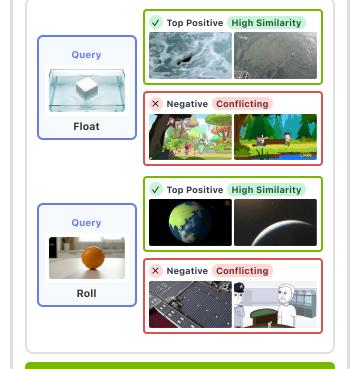


Motion-gradient computation has three steps: (1) detect motion with AllTracker; (2) compute motion-magnitude patches; (3) apply lossspace motion masks to focus gradients on dynamic regions.

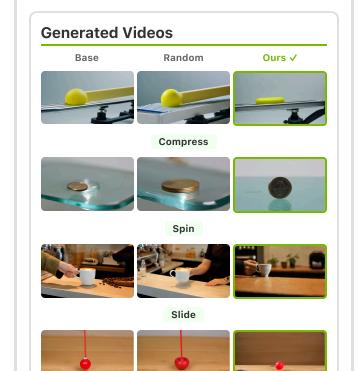
MOTIVE: A scalable, gradient-based, motion-centric data attribution framework for video generation models



### **Motion Attribution Samples**



### **Qualitative Results**



Free Fall

### **Quantitative Results**

## **VBench Evaluation**

| Method        | Motion Smooth. | Dynamic Deg. |
|---------------|----------------|--------------|
| Base          | 96.3           | 82.3         |
| Full FT       | 96.3           | 84.7         |
| Random 10%    | 96.3           | 81.6         |
| Ours w/o mask | 96.3           | 85.3         |
| MOTIVE        | 96.3           | 89.4         |

√ Maintains smoothness, improves dynamics with only

### Why Motion Masking?

Without: 85.3%

With: 89.4% (+4.1%)

### **Human Evaluation**

76.7% win vs. Base: 66.7% win vs. Random: vs. Full FT: 57.5% win

### **Ablation Findings**

Single Timestep: t=500 achieves 68% agreement. Projection: D'=512 reaches 74.7% Spearman ρ.

Conclusion

First motion-centric attribution framework for video generation

Scalable via projection & majority voting

76.7% human preference vs. baseline with 10% data; Motion masking: +4.1% Dynamic Degree