":[:V m%lﬁ Where Is Motion From? Scalable Motion Attribution for Video Generation Models

0CT19-23, 2025
Xindi Wu" 2, Despoina Paschalidou', Jun Gao', Antonio Torralba3, Laura Leal-Taixé, Olga Russakovsky?, Sanja Fidler', Jonathan Lorraine' @ nVI DIA®

Workshop on Reliable and Interactable INVIDIA, 2Princeton University, 3MIT CSAIL
World Models

m Motion Attribution Samples Quantitative Results

Which training clips drive the motion in a video
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Method Components Motion-gradient computation has three steps: (1) detect motion with AllTracker; (2) compute motion-magnitude patches; (3) apply loss-
space motion masks to focus gradients on dynamic regions. Conclusion
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