
Marrying Motion Forecasting and Offline
Model-Based Reinforcement Learning for

Self-Driving Cars

Swapnil Pande and Xindi Wu
Robotics Institute

Carnegie Mellon University United States
{swapnilp, xindiw}@andrew.cmu.edu

Abstract:
Many of the current state-of-the-art reinforcement learning (RL) algorithms for
self-driving cars require online training, which cannot take advantage of the mil-
lions of miles of logged driving data available. Model-based offline RL(MBRL)
has the promise of learning effective driving behaviors from this data. However,
the simple MLP models that have traditionally been used in offline MBRL fail to
perform well for the self-driving task, partially due to the difficulty of forecasting
the complex behaviors of the other dynamic actors in the environment. To per-
form offline MBRL for self-driving cars, we propose to use an uncertainty-aware
dynamics model that decouples the dynamics for the ego-vehicle and other vehi-
cles, and apply prior work in motion forecasting to do other-vehicle prediction.
We show that this algorithm is capable of learning simple driving behavior and
demonstrate its shortcomings for more complex driving scenarios.

Keywords: Offline Reinforcement Learning, Motion Forecasting, Autonomous
Driving

1 Introduction

Over the past decade, there has been immense interest in both industry and academia for develop-
ing algorithms for autonomously driving vehicles. However, developing an algorithm that requires
no human intervention has proven to be quite difficult. Many of the successful approaches use a
hand-crafted set of modules, each performing a subtask of the driving problem, such as localiza-
tion, mapping, localization, and control [1]. These approaches require extensive manual tuning of
parameters to move closer to the goal of fully autonomous driving.

To circumvent the need for tuning each module, there are many recent works that propose imitation
learning as a viable solution to map directly from sensor inputs to driving commands. However, even
these systems become difficult to scale due to the need for the extensive expert demonstrations of
the rare scenarios that a car might encounter. Reinforcement learning has the potential to alleviate
this data issue, as the policy is no longer directly optimized to mimic the expert demonstrations.
Additionally, the formulation of RL as a sequential decision making process is better suited for the
task of driving compared to treating each time step as independent as imitation learning does.

However, a common problem with reinforcement learning is that it cannot be trained online in the
real world due to its high sample complexity. Deploying a random policy to a car would be too
expensive, both in terms of time and in potential accidents. As a result, most learning approaches
focus on learning in a simulator and later transferring their policies to the real world. While this
may be an effective solution, it cannot take advantage of the million miles of driving logs that self-
driving car companies have available. These logs contain many useful scenarios and examples of
how to react in certain scenarios. Due to the availability of this data, we believe the self-driving car
challenge can be posed as an offline reinforcement learning challenge, in which we attempt to train
a policy using only an offline dataset of interactions with the environment. Furthermore, we focus
on the idea of model-based offline reinforcement learning, in which we learn a dynamics model of

the environment to generate rollouts to optimize a policy. This allows us to “imagine” new scenarios
that did not exist in the original dataset.

This approach poses an additional challenge: building a model of such a high-dimensional and
cluttered environment is very difficult. In the self-driving car environment, there are multiple actors
all interacting with each other and the static objects. Modeling the dynamics of all of these agents
in the observation space of the policy would likely result in a poor model as it needs to predict the
behavior of the other agents as well as how our observation frame changes. For example, it would be
very difficult to predict the position of another car in a front-facing image taken from our car as both
cars are moving independently. We propose to simplify this problem by decomposing the model
of the environment into a model of the ego-vehicle dynamics and a model of all of the other actors
in the environment. The model of the ego-vehicle dynamics simply predicts the vehicle’s evolution
given the actions generated by the policy. To model the motion of all of the other vehicles, we can
apply the recent advances in the literature on motion forecasting. This decomposition allows us to
independently reason about our vehicle and other vehicles, and combine the predictions to generate
an observation for the policy. Additionally, we can also more explicitly represent the process of
“imagining” new trajectories for the other vehicles, allowing us to generate additional training data
not already in the dataset.

In this work, we propose a method for performing offline model-based reinforcement learning for
self-driving cars. Particularly, we propose a novel model architecture that decomposes the dynamics
into the dynamics of the ego-vehicle and the dynamics of other vehicles. To model the dynamics
of other vehicles, we apply recent techniques from motion forecasting. We believe that this model
architecture will better allow us to reason about the behavior of other actors, so that we can learn
policies that effectively and safely interact with other vehicles on the road. We do not focus on the
task of learning from raw sensor inputs such as lidar or RGB images. Instead, we assume that, in
addition to raw sensor data, we are given access to a low-dimensional representation of the state
space, which can be computed from raw sensor inputs.

2 Related Works

2.1 Learning for Self-Driving Cars

There are many examples of papers that apply imitation learning to learn from sensor inputs using
datasets of expert demonstrations [2, 3, 4, 5]. Since pure imitation learning cannot learn to correct
mistakes, these methods propose various methods to augment the imitation learning process. For
example, [4] trains a priveleged expert from expert demonstrations and then trains a student imita-
tion network that accepts the raw camera input. While training the student, the expert is also queried
for all possible driving commands at every state to augment the imitation dataset. [5] augments the
imitation learning dataset by adding perturbations to driving trajectories that demonstrate how to
recover if the vehicle begins to drift out of lane. While these methods have shown success, the per-
formance of an imitation learning agent is capped to that of the expert demonstrations. Additionally,
these methods are difficult to scale as they require expert demonstrations of all of the scenarios the
vehicle may encounter.

Recently with the successes of deep reinforcement learning (DRL) for a wide variety of planning
and control tasks, DRL, reinforcement learning methods have begun to surpass the performance
of imitation agents in standard self-driving benchmarks. Particularly, [6] demonstrates strong per-
formance on the standard driving benchmarks, using a policy trained online using Proximal Policy
Optimization (PPO) [7]. In this method, they consider a hand-crafted low-dimensional state space
that contains the necessary features for learning effective driving behaviors, and also demonstrate
success learning directly from semantically segmented images. Formulating the problem as a se-
quential decision making process is better suited to self-driving compared to treating each time-step
as i.i.d. as imitation learning does. We adopt a slightly modified version of the low-dimensional
state-space presented in this work and apply it to learning in the offline setting.

We use the CARLA simulator [8] to generate data and evaluate our policy, which has been used
extensively in literature for self-driving cars. Additionally, we benchmark our algorithm using the
CARLA benchmark they propose.

2

2.2 Offline Reinforcement Learning

There has been growing interest in developing and improving reinforcement learning algorithms
for the offline setting. A more comprehensive survey of current techniques can be found at [9].
One group of methods for Offline RL focus on improving the stability of off-policy Q-learning
by reducing the overestimation of the Q-function in regions out of the data support [10, 11, 12].
For example, [12] performs well by including a constraint that discourages the Q-function from
predicting higher values for out-of-distribution states compared to in-distribution states. While these
methods have proven to be successful, we focus on model-based offline RL because of its potential
to “dream” of rare scenarios not present in the original dataset, such as near collisions with other
vehicles and unpredictable pedestrians.

Another class of methods focus on performing Offline RL in a model-based setting with a learning
procedure similar to the one presented in [13]. At a high level, these methods first optimize a
model f(st, at) to predict the transition dynamics of the environment. They then train a policy by
performing autoregressive rollouts with actions sampled from the policy being optimized. However,
similar to the Q-learning algorithms, the model often poorly extrapolates in regions of the state
space outside of the data distribution. Therefore, recent works such as [14, 15] present uncertainty-
aware dynamics models and introduce a penalty in the reward function conditioned on the state
estimation uncertainty during the policy optimization. We focus on applying an algorithm similar to
those presented in [14, 15], in which the policy is penalized proportionally to the magnitude of the
model’s uncertainty in the given state. However, we improve upon their dynamics model structure,
by building a model that encodes inductive biases about the structure of the self-driving car problem.

2.3 Motion Forecasting

Motion forecasting has been increasingly essential for the self-driving car field [16, 17], recent
progress has shown promising trajectory prediction results given sensor data. [18] provides a sur-
vey of traditional approaches. Several benchmarks and datasets are widely used including Argov-
erse [16], nuScenes [19] and Lyft Prediction [20]. Some methods rasterize the scene for agents as
RGB Birds-Eye-View(BEV) images with actor trajectories overlaid onto the image [21, 22], and use
different channels for observation timesteps. Some learning-based methods applied long short-term
memory units to generate lane-changing trajectories [23], or help process the multi-agent interac-
tions [24]. [25] proposed the combination of LSTM encoder-decoder and the attention mechanism
to predict the lane changing intention and the future trajectories.

VectorNet [26] uses a RNN to encode the map which is regarded as a collection of polylines and
incorporate vectorized map prior and agent dynamics for motion forecasting. LaneGCN [27] builds
a graph of lanes and conducts hierarchical graph convolutions over the vectorized map data to un-
derstand the complex topology and actor-map interactions. PRECOG [21] proposed a multi-agent
generative motion forecasting method, it aims to capture the future stochasticity in the actor’s goals
conditioned on the position of all other actors. In our work, we follow the motion forecasting concept
used in [21] and combine it with the offline RL setting to learn a driving policy for the agent.

3 Methods

3.1 Problem Formulation

We consider the task of self-driving as a Partially-Observable Markov Decision process (POMDP)
defined as the tuple (S,O,A, r, P, ρ0, γ), where S is the state space, O is the observation space,
r : S × A is the reward function, P : S × A × S is the state transition probability, ρ0 is the initial
state distribution, and γ is the discount factor. Our objective is to find a policy π(at|ot) such that:

π = argmax
π

E

[∞∑
t=0

γtR(st, at)

]
(1)

The offline RL problem extends this setting by assuming we are given a dataset D =
{si, oi, ai, ri, si+1}Ni=1, generated by a set of data generation policies πD. We assume we have

3

no knowledge about these data collection policies. Our goal is to find the policy in Equation 1 using
only the experience in dataset D.

A full diagram of model can be found in Figure 2. We propose a model-based learning approach, in
which we first learn an uncertainty aware model of the transition dynamics P (st+1|st, at) based on
the offline dataset D. Using these transition dynamics, we then optimize the policy π by performing
5-step rollouts with actions sampled from the policy. We penalize the policy for entering states with
high uncertainty in a manner similar to MOPO, presented in [15].

Vehicle

Dynamics

Motion
Forecasting

Compute
combined

uncertainty
Compute

Policy π

Convert to
low-dim

state space

Dynamics model

Used for policy optimization

Figure 1: Overview of the proposed structure of our model

3.2 Self Driving Car Environment

We formulate the self-driving car problem as follows: our goal is to travel from a source waypoint to
a destination waypoint, while avoiding infractions such as colliding with other vehicles, pedestrians,
and static objects as well as following driving rules such as staying within lanes. We assume that we
have knowledge of the route to follow, described as a series of dense waypoints (4.5 meters apart)
between the source and destination waypoints. Additionally, action inputs are mapped through PID
controllers to smooth the motion of the vehicle. This problem formulation is inspired from the work
presented in [6].

3.3 Dynamics Model

The objective of the dynamics model is to model the state transition probability P (st+1|st, at). A
naı̈ve approach to selecting the representation of S would be making it the same as observation
space for the vehicle O. However, this is a difficult representation to learn, as the feature evolution
in the observation is a function of both our vehicle dynamics, as well as the intentions of the other
dynamic actors in the environment. For example, if the observation space was a forward-facing
image, we would have to predict the transformation of the camera frame due to our action, as well
as the relative transformation of the other vehicles due to their actions. This representation would
be difficult to learn and couples the uncertainty in the motion of our vehicle with the motion of the
other vehicle.

Instead we select a state representation that naturally decouples into the dynamics of our vehicle and
the dynamics of all of the other nearby vehicles. Specifically, S contains the coordinates (relative to
a map frame) of the other vehicles and detailed features about our vehicle’s state. With this represen-
tation, the evolution of the other vehicles can be predicted using prior work in motion forecasting,
while the evolution of our vehicle can be predicted using a separate dynamics model. Once these
are separately computed, they can be combined to reconstruct an observation for the policy. This
simplifies the prediction problem and incorporates prior work in motion prediction to improve our
modelling performance.

3.3.1 Ego Vehicle Dynamics

The dynamics of the ego vehicle are described by four key features. The first two features are the
current steer angle (s̃) and the current speed (ṽ) of the vehicle. The next two features are related to
the waypoints. The distance from trajectory (ñ) describes the perpendicular distance between the
vehicle and the trajectory defined by the waypoints. Finally, we add an orientation error (w̃), which

4

denotes the angular error between the vehicle’s current heading and the next waypoint. A visualiza-
tion of the distance to trajectory and orientation error can be found in Figure 4 in the appendix. To
predict these waypoint features, the dynamics model additionally requires information about the po-
sition of the waypoints. Therefore, we also include the cartesian coordinates of the next 3 waypoints
in the vehicle frame: ẽt = {(xt,w1, yt,w1), (xt,w2, yt,w2), (xt,w3, yt,w3)}. It is important to note that
the dynamics model cannot predict these since they are generated by a high-level planner and are
not a function of the state. Therefore, we assume these are given from the dataset. Finally, we stack
a history of the previous two states as the input. In total, the input space for the vehicle dynamics is
(ñt−1, ñt, w̃t−1, w̃t, s̃t−1, s̃t, ṽt−1, ṽt, ẽt−1, ẽt) and the output space is (ñt+1, w̃t+1, s̃t+1, ṽt+1).

We parametrize the dynamics model as an ensemble of multi-layer perceptrons. We opt for an MLP,
instead of a simplified model such as a bicycle model, as an MLP can capture higher order dynamics
that a bicycle model may not be able to represent. At each time step, we sample the output of one
of members of the ensemble as the next state prediction. Additionally, we estimate the uncertainty
in the dynamics prediction as proportional to the maximum discrepancy in state prediction between
members of the ensemble, as proposed in [15]. Specifically, we define the uncertainty as follows:

uv(s, a) = max
i,j
‖fi(s, a)− fj(s, a)‖2 (2)

where i and j index the members of the ensemble.

The dynamics models are trained by minimizing the Huber loss between the 1-step predictions and
the ground-truth in the dataset. We train each member in the ensemble with a different shuffling of
the dataset.

3.3.2 Motion Forecasting for Other Vehicle Prediction

Figure 2: Overview of the proposed structure of the motion forecasting model. Ego-vehicle LIDAR
features are passed through a CNN, and interpolated into the frame for each agent. The history of
states for all of the agents are fed through RNNs and combined with LIDAR features to generate
predictions for the next states for each agent.

To predict the behavior of other vehicles, we apply motion forecasting on vehicles near the ego
vehicle to predict their future trajectories. For the vehicles of interest {V1, . . . , VM}, given the
location information of each vehicle Vi, where XVi

= (xti, y
t
i) for time steps t = {1, . . . , obs}, we

aim to predict the future coordinates YVi = (xti, y
t
i) for T steps t = {obs + 1, . . . , obs + T}. A

diagram of the model is presented in Figure 2, which is based on the approach proposed proposed
in [21]. We use a probabilistic generative model to model the multi-agent system with A agents.
Each agent’s state is described by the environment perception information φ .

= {S−obs:0,χ}, where
obs denotes the number of time steps of position history and χ ∈ R100×100×2 represents LIDAR
observation generated from the ego-vehicle. It is important to note that S includes the position of all
nearby vehicles.

Given this state φ, our model St+1 ∼ q(·|St−obs:t, φ) generates predictions of next state for each
vehicle. In order to handle uncertainty in the goals of each agent, the model predicts a mean µ and
standard deviation σ for a Gaussian over next states. We sample from this Gaussian by sampling a
latent Z ∼ N (0,1), and mapping that through the function Sat = f(Z;µ, σ) = Sat−1 + (Sat−1 −
Sat−2) + µ + σ ∗ Z . As an application of the reparametrization trick (referred to in [21] as a

5

pushforward function), this is differentiable. We optimize the following joint distribution under the
dataset.

q(S|φ) =
T∏
t=1

q(St+1|St−obs:t, φ). (3)

Finally, we quantify the uncertainty in the forecasting prediction at time t as follows:

uf (s) =

A∑
a=1

σat (s) (4)

where A is the number of vehicles we are modeling.

3.3.3 Combining Features

We combine the features predicted by the vehicle dynamics and the motion forecasting to create
the observation for the policy. The observation contains all of the features predicted by the vehicle
dynamics model (nt+1, wt+1, st+1, vt+1). Additionally, we include another feature õ that represents
the distance of the nearest vehicle in front of our vehicle, which is calculated from the predicted
position of vehicles from the motion forecasting model. We set õ = 1 if the distance of the vehicle
in front is greater than or equal to a threshold distance.

3.4 Policy Optimization

The policy π is parametrized by a multi-layer perceptron. The action space for the policy is the target
velocity and target steer angle for the PID controller. The reward function is defined as follows:

R = α ∗ ṽ − β ∗ ñ− I(s)− η ∗ uv(s, a)− ω ∗ uf (s, a) (5)

where ṽ is the velocity of the ego vehicle, ñ is the distance to trajectory feature, I(s) is an infraction
penalty, and uv and uf are the uncertainty of the state, action pair. We consider two infractions in
the infraction penalty: a collision with another vehicle (distance between vehicles below threshold)
and an off-route penalty (distance to trajectory greater than threshold). α, β, η, and ω are constant
hyperparameters representing the weight of each term in the reward function.

To optimize the policy using the dynamics model, we initialize the dynamics model to a state from
the dataset and perform 5-step rollouts with actions sampled from the policy. The policy is optimized
using proximal policy optimization [7].

4 Experimental Results

4.1 Dataset

We generate a dataset of driving trajectories in Town01 in Carla 9.10. 50 other vehicles are also
intialized in the environment. The data generating policy is a predefined CARLA autopilot policy,
that uses heuristics about the state to generate driving policies. We additionally add Gaussian noise
to the autopilot policy to improve the performance of the dynamics model. The dataset contains a
total of 60,000 environment interactions.

4.2 Benchmarks

We evaluate the performance of our policy using a slightly modified version of the original CARLA
benchmark [8]. The CARLA benchmark has 4 challenge levels, varying from driving straight to
navigating through a town with other dynamic agents. In this benchmark, the episode only ended
when the agent reached the goal waypoint. We simplify this benchmark to include three difficulty
levels. The first (straight) requires the agent to follow a straight route with no other vehicles in the
environment. Next, the second level (turn), requires the agent to follow a route containing a turn.
Finally, the third level (dynamic straight), requires the agent to follow a straight route with other
vehicles in the environment.

6

We compare our policy against Learning by Cheating [4], a state of the art imitation learning algo-
rithm. For the “Straight” and “One Turn” benchmarks, we train a single policy for both benchmarks.
Additionally, we do not include the motion forecasting model for these as there are no other vehi-
cles in the environment. We train a separate policy for the “Dynamic Straight” benchmark, with the
motion forecasting model included.

4.3 Ego Vehicle Dynamics Learning

We first evaluate the performance of our vehicle dynamics model on a hold-out validation dataset, as
shown in Figure 5 in the appendix. We perform an ablation on the features in the dynamics model.
Specifically, we compare the performance of the full state space to a state space with the history
of the t − 1 step removed and another with the waypoint positions removed. The results show that
these features are critical for effectively learning the dynamics of the vehicle. The stack of observa-
tions allows the model to estimate higher order derivatives in the vehicle dynamics. The waypoint
positions help to improve the prediction of the next orientation and distance to trajectory features.
The next orientation and distance to trajectory are a function of the position of the waypoints as well
as the position of the vehicle. If the waypoints are static, the model should not need information
about the position of the waypoint to predict how the feature will evolve as it is then only a function
of the vehicle position. However, during a time step, the vehicle may “cross” a waypoint, causing
that waypoint to be removed from the trajectory. As a result, the model would no longer know the
position of the next waypoint, leading to erroneous predictions. In these cases, the knowledge of
the position of the waypoint is important to correctly predict the distance to trajectory and waypoint
error.

4.4 Motion Forecasting

We visualize examples of the motion forecasting predictions in Figure 3. Additional images as
well as performance metrics are presented in Figure 6 and Table 2 in the appendix. The figures
demonstrate that the model accurately captures the true trajectory within the distribution of predicted
trajectories. However, we also see in 3b that some of the trajectories are still infeasible, where the
vehicle is predicted to drive into an obstacle. This means that we may not be able to trust the model
predictions over long horizons. The model does perform well for 5-step rollouts, which is the rollout
length used for policy optimization.

(a) (b)

Figure 3: Image of distribution of possible vehicle trajectories (blue) compared to ground-truth
(orange). (a) contains a straight driving trajectory and (b) contains a turning trajectory.

4.5 Policy Learning

The results of the policy training are presented in Table 1. Additionally, videos of the driving
behaviors are available at the link below1. We find that the policy is able to perform well on the

1https://drive.google.com/drive/folders/1KT87gr5IOGO5CBE4VnXqW0XifFBFFWFr?usp=sharing

7

https://drive.google.com/drive/folders/1KT87gr5IOGO5CBE4VnXqW0XifFBFFWFr?usp=sharing

Task LBC [4] Ours
Straight 25 24

One Turn 25 4
Dynamic Straight N/A 1

Table 1: Performance of our policy evaluated in Town01 on the CARLA benchmark (Success
Episodes out of 25)

Straight benchmark, achieving a nearly perfect score. However, the car does not perform well on
the One Turn and Dynamic Straight benchmarks.

In the One Turn benchmark, we find that the car’s velocity entering turns is too high, causing the car
to enter the oncoming traffic lane as it takes the turn. As it enters the opposing lane, the car actually
stops completely, causing the episode to time out. In the case of the Dynamic Straight benchmark,
we find that the car does not stop behind vehicles, instead continuing forward and colliding with
them.

We believe that both of these failure cases are a result of the short episode rollouts, which cause poor
value function estimation. In the turning case, for example, the policy is likely learning to accelerate
into a turn as this locally maximizes rewards due to the high velocity. Normally in the online setting,
the value function estimate at the terminal state would correct this behavior, as policy rollouts would
demonstrate that these poor states result in low future reward through the turn. However, in the
offline setting, we start policy rollouts only from states present in the dataset, meaning we rarely
encounter these poor turn states resulting in a poor value estimate in these states. Similarly, in the
case of the Dynamic Straight benchmark, the policy is always initialized at a safe distance away
from vehicles in front. In the 5-step rollout, the policy likely never encounters a collision state.
Therefore, the policy learns to maximizes it’s reward by maintaining its velocity as it drives toward
the car, without considering the resulting poor long-term reward.

These issues may be fixed by better tuning the penalization weights for the uncertainty estimates, as
the dynamics models should have higher uncertainty in states not present in the dataset. Addition-
ally, we can increase the rollout length to collect rewards on a longer horizon, which may require
improving the dynamics model to reduce the rate of error growth in the predictions. Finally, we can
switch to using a Q-learning policy optimization method, such as Soft Actor-Critic [28] or Conser-
vative Q-Learning [12], which would allow us to include expert trajectories from the dataset in our
policy optimization as well.

We also find that the policy sometimes learns to brake in cases where the car is drifting off the road
or into the wrong lane, a behavior that is not present in the dataset. This demonstrates the benefit
of a reinforcement learning approach over an imitation learning approach, namely that we can learn
safe behaviors according to a reward function, allowing us to perform better than the data collection
policies. Figures 7,8 in the appendix show a comparison of the actions taken by the learned policy
and the actions in the dataset. Overall, we see that the policy’s steer angle is similar to those in the
dataset, but the target speed is very different.

5 Conclusion

In this work, we propose a method for performing offline model-based reinforcement learning for
self-driving cars. We build a dynamics model that decouples ego-vehicle dynamics from other
vehicle dynamics, for which we apply prior works in motion forecasting. We demonstrate that
the policy is able to learn basic lane-following behaviors, including some safe behaviors not present
in the dataset. However, the policy fails to learn more complex behaviors such as turning and
collision avoidance, likely due to the short policy training rollouts. In the future, we plan to evaluate
and improve the prediction accuracy of our dynamics models to perform longer policy rollouts.
Additionally, we would like to explore using Q-learning based policy optimization methods that
allow us to incorporate expert trajectories in the policy optimization dataset. Finally, we hope to
explore the performance of our dynamics model for learning effective behaviors in scenarios with
complex interactions with other vehicles, such as lane merging or 4-way stop intersections.

8

References
[1] M. Campbell, M. Egerstedt, J. How, and R. Murray. Autonomous driving in urban environ-

ments: Approaches, lessons and challenges. Philosophical transactions. Series A, Mathemati-
cal, physical, and engineering sciences, 368:4649–72, 10 2010. doi:10.1098/rsta.2010.0110.

[2] A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V.-D. Lam, and A. Kendall. Learning to drive
from simulation without real world labels. Dec. 2018.

[3] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. End-to-end driving via
conditional imitation learning. Oct. 2017.

[4] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. Learning by cheating. Dec. 2019.

[5] M. Bansal, A. Krizhevsky, and A. Ogale. ChauffeurNet: Learning to drive by imitating the
best and synthesizing the worst. Dec. 2018.

[6] T. Agarwal. On-policy reinforcement learning for learning to drive in urban settings. Master’s
thesis, Pittsburgh, PA, August 2020.

[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. July 2017.

[8] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban
driving simulator. Nov. 2017.

[9] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. May 2020.

[10] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
Sept. 2015.

[11] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-
critic methods, 2018.

[12] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative Q-Learning for offline reinforce-
ment learning. June 2020.

[13] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-Based policy
optimization. June 2019.

[14] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. MOReL : Model-Based offline
reinforcement learning. May 2020.

[15] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. MOPO: Model-
based offline policy optimization. May 2020.

[16] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey,
D. Ramanan, et al. Argoverse: 3d tracking and forecasting with rich maps. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8748–8757,
2019.

[17] W. Luo, B. Yang, and R. Urtasun. Fast and furious: Real time end-to-end 3d detection, tracking
and motion forecasting with a single convolutional net. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 3569–3577, 2018.

[18] S. Lefèvre, D. Vasquez, and C. Laugier. A survey on motion prediction and risk assessment
for intelligent vehicles. ROBOMECH journal, 1(1):1–14, 2014.

[19] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019.

[20] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and P. On-
druska. One thousand and one hours: Self-driving motion prediction dataset. https:
//level5.lyft.com/dataset/, 2020.

9

http://dx.doi.org/10.1098/rsta.2010.0110
https://level5.lyft.com/dataset/
https://level5.lyft.com/dataset/

[21] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine. Precog: Prediction conditioned on goals
in visual multi-agent settings. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2821–2830, 2019.

[22] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M. Wolff. Covernet: Multi-
modal behavior prediction using trajectory sets. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14074–14083, 2020.

[23] D.-F. Xie, Z.-Z. Fang, B. Jia, and Z. He. A data-driven lane-changing model based on deep
learning. Transportation research part C: emerging technologies, 106:41–60, 2019.

[24] L. Hou, L. Xin, S. E. Li, B. Cheng, and W. Wang. Interactive trajectory prediction of surround-
ing road users for autonomous driving using structural-lstm network. IEEE Transactions on
Intelligent Transportation Systems, 21(11):4615–4625, 2019.

[25] J. Zhu, S. Qin, W. Wang, and D. Zhao. Probabilistic trajectory prediction for autonomous
vehicles with attentive recurrent neural process. arXiv preprint arXiv:1910.08102, 2019.

[26] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid. Vectornet: Encoding
hd maps and agent dynamics from vectorized representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11525–11533, 2020.

[27] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun. Learning lane graph
representations for motion forecasting. In European Conference on Computer Vision, pages
541–556. Springer, 2020.

[28] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor, 2018.

10

6 Appendix

6.1 Description of Low-Dimensional Features

Figure 4: Visualization of Distance to Trajectory and Next Orientation Features

6.2 Ego-Vehicle Dynamics Ablation Results

Figure 5: Performance of three vehicle dynamics models on a validation dataset. The full model
includes the entire input space as described in the methods. W/O stack removes the t − 1 history
of the state (only includes state at time t). W/O Waypoints removes the positions of the waypoints
relative to the vehicle

6.3 Motion Forecasting Performance Evaluation

Evaluation Metric Definitions:

• H(p, q) Test log-likelihood: H(p, q) = −ES∗∼p(S∗|φ) log q(S
∗|φ), it is given by the for-

ward cross-entropy.
• ê Extra nats: ê .

=
[
H(p′, q)−H(η)

]
(TAD) ≥ 0, it is the normalized extra nats above 0.

• m̂ min Mean Squared Displacement(MSD): for each ground truth trajectory, it computes
the minimum mean error between the ground truth trajectory and its associated forecast
trajectories.

Results are presented in Table 2 and additional trajectory predictions in Figure 6

Mean H(p, q) -83.768 ± 0.109
Mean ê 1.092 ± 0.003
Mean m̂ 1.333 ± 0.041

Table 2: Additional Motion Forecasting Performance Metrics

11

Figure 6: Additional Trajectory Predictions from the Motion Forecasting Model

6.4 Comparison of Policy and Dataset Actions

Figure 7: Comparison of target speed selected by trained policy with target speed in dataset

12

Figure 8: Comparison of steer angle selected by trained policy with target speed in dataset

13

	Introduction
	Related Works
	Learning for Self-Driving Cars
	Offline Reinforcement Learning
	Motion Forecasting

	Methods
	Problem Formulation
	Self Driving Car Environment
	Dynamics Model
	Ego Vehicle Dynamics
	Motion Forecasting for Other Vehicle Prediction
	Combining Features

	Policy Optimization

	Experimental Results
	Dataset
	Benchmarks
	Ego Vehicle Dynamics Learning
	Motion Forecasting
	Policy Learning

	Conclusion
	Appendix
	Description of Low-Dimensional Features
	Ego-Vehicle Dynamics Ablation Results
	Motion Forecasting Performance Evaluation
	Comparison of Policy and Dataset Actions

