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Max, the adventurous corgi, started his day with a 
refreshing swim in the backyard pool
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4

After drying off, he wandered through the living room and  
stepped on a remote controller by chance.

He pressed some buttons and accidentally turned on the 
TV, which was showing a documentary on sheep herdingInstruction 


Prompt

Write a fictional 
story based on this 
image, 4 sentences

Inspired by the documentary, Max organized his stuffed 
animals into a neat pile with his herding instincts. 

Figure 1. Illustration of our proposed method Corgi for multi-scene video generation. Given a few input images of the target subject
and an instruction prompt (left), Corgi – our multi-scene video generation method can generate consistent, faithful and diverse videos
(right) conditioned on the generated intermediate story prompts.

Abstract

Text-to-Video generation has achieved remarkable
progress with the rise of diffusion models. In this work,
we introduce Cached Memory-Guided Video Generation
(Corgi), aiming to generate multi-scene videos with arbi-
trary number of video clips, conditioned on input images
and instruction prompts. This is a challenging task, as tra-
ditional T2V methods often struggle to maintain the quality
of longer videos due to the difficulties in preserving visual
context from earlier scenes. We address this by introduc-
ing a cached memory mechanism that stores the key frames.
Our multi-scene video generation process is explicitly con-
ditioned on the cached memories to avoid forgetting the vi-
sual appearance of target subjects. Corgi shows significant
improvement in multi-scene video generation compared to
the prior art, with up to 59.2% in long-term consistency and
7.6% in diversity.

*Work partially done at Meta

1. Introduction

Recent advances in Text-to-Video (T2V) generation have
enabled diffusion models [12, 33] to generate coherent
videos from text descriptions. However, most of these
methods are limited to generating videos with a single
scene. Multi-scene video generation, which creates videos
that span multiple scenes, is still a challenging task that has
not been fully explored in the current literature. Despite its
importance in applications such as filmmaking or game de-
sign, where there is a demand for maintaining consistency
and character appearances across multiple video clips, there
remains a significant gap between the current state-of-the-
art and the desired capabilities. To tackle multi-scene video
generation, we propose Corgi, with the cached latent mem-
ory bank as a core component, aiming to generate arbitrarily
long videos by concatenating multiple video clips.

Why is it hard? Multi-scene video generation, the pro-
cess of generating multi-scene long videos with multimodal
inputs (Fig. 1), primarily faces challenges in consistency,
faithfulness, and diversity. First, the consistency constraint
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is two-fold: long-term and short-term. Long-term consis-
tency emphasizes maintaining global visual style and sub-
ject continuity across all video clips, while short-term con-
sistency focuses on smooth transitions between consecu-
tive frames within one video clip, avoiding generating flick-
ering, low-quality videos with unrealistic motion changes.
Second, faithfulness requires that the generated content is
aligned with both image and text inputs. Balancing control
between vision-language conditions is crucial. Lastly, the
results generated should demonstrate diversity. While cur-
rent open-source video generation methods are capable of
creating realistic animations based on Text-to-Image (T2I)
models, they often lack diversity in both motion and visual
appearance. For example, the generated results may still re-
semble static images with minimal movement, or subjects
may consistently face the same direction, indicating a limi-
tation in achieving diverse and dynamic visualizations. All
of these make multi-scene video generation challenging.

Corgi. In this work, we propose Corgi, a novel framework
designed to generate multi-scene videos guided by cached
memories. Corgi is inspired by neuroscience research on
how human brains remember long videos [14]. Key repeat-
ing moments appear to cause similar activations in the view-
ers’ brains and thus help them understand the storyline. We
propose a multi-scene video generation method where key
frames, serving as core memories, are generated first and
stored in a cached latent memory bank. Given our goal of
generating arbitrarily-long multi-scene videos, we fine-tune
the T2I base model to encode the visual appearance of input
reference images. We then cache these visual memories in
a latent bank as an intermediate step. This memory-guided
generation process thus allows the multi-scene video output
to be consistently and faithfully conditioned on these latents
stored in the bank. Moreover, we select diverse latents from
the cached latent bank to improve the overall diversity of
the generated videos to avoid repetitiveness. We summarize
our main contributions as follows:
1. We introduce Corgi to generate multi-scene videos

guided by cached memory and subject finetuning.
2. To ensure consistent, faithful, and diverse output, we

propose a cached memory mechanism. Latents, or
‘memories’, are selectively stored as key frames.

3. We demonstrate empirically that our approach is effec-
tive and outperforms SOTA methods across key metrics
for high-quality multi-scene video generation. Corgi im-
proves long-term consistency by 59.21% and diversity
by 7.57%. We further conduct human evaluation which
aligns with our quantitative results observation.

2. Related Work

Text-to-Video Generation. Recent advancements in
diffusion-based T2I generation [20, 23, 25, 28, 30, 38],

have led to the production of high-quality images. Build-
ing on T2I models, T2V generation also shows promising
results. Make-A-Video [31] extends the T2I model to T2V
with a spatio-temporal diffusion model and super-resolution
techniques. Align-Your-Latents [2] trains separate temporal
layers in a T2I model. AnimateDiff [7] shows impressive
results with motion module which can be used to bridge
the gap between the T2I and T2V models. Text2Video-
Zero [15] offers a training-free animation approach via la-
tent wrapping given a predefined affine matrix.

However, those video generation methods are limited to
short video generation and struggle with generating long co-
herent videos across multi-scenes.

Long Video Generation. In order to generate coher-
ent long videos, recent works proposed hierarchical ar-
chitectures and extrapolation methods [8, 35, 40, 43].
Phenaki [34] uses a transformer-based method and masked
tokens to generate variable-length videos, compressing
videos into discrete tokens with causal attention. NUWA-
Infinity [40] and NUWA-XL [43] explore autoregressive
and diffusion over diffusion approaches, respectively, for
patch generation and long-term coherence. Animate-
A-Story [10] addresses inconsistencies by introducing a
retrieval-augmented pipeline and TimeInv to finetune on
personalized concepts. Gen-L-Video [36], a tuning-free
method, splices short video sub-segments under multiple
text conditions for smooth extensions. Freenoise [26]
reschedules noise sequences for long-range correlation
and uses window-based fusion for temporal attention.
SEINE [5] introduces a random mask video diffusion model
to generate transitions based on textual descriptions.

Unlike existing long video generation approaches, which
focus on generating more frames simultaneously, we sam-
ple the videos clip-by-clip sequentially to promote long-
term inconsistency. Following Gen-l-video [36], we com-
pare our method with existing methods in Tab. 1.

Subject-driven Customized Generation. Customization
(or personalization) image/video generation usually con-
dition on a few user-provided reference images. Several
works have explored customized image generation with pre-
trained diffusion models, where the unseen visual subjects
will be embedded in the output space. DreamBooth [29]
finetunes a diffusion model to learn the rare token. Tex-
tual Inversion [6] optimizes a learnable text token to rep-
resent a given subject. Custom Diffusion [18] proposes a
lightweight parameter-efficient finetuning method to cus-
tomize multiple concepts. Similarly, for customized video
generation, previous works [13, 44] also explored the use
of reference images to personalize the video diffusion
model. VideoComposer [37] decomposes videos into dif-
ferent types of conditions, and jointly customizes the spa-
tial and temporal patterns. VideoDreamer [4] focuses on
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Table 1. Comparison to different methods. Key features evalu-
ated include the ability to generate long videos (Long), the support
for multi-text conditions guiding the generation (Multi-Text Con-
dition), do not rely on a vast video corpus for training or genera-
tion (Sample Efficient), the utilization of parallel denoising tech-
niques for efficiency (Parallel Denoise), versatility in generating
a wide range of video types (Versatile), and the ability to generate
personalized videos conditioned on subjects (Image Condition).

Method Long Multi-Text Sample Parallel Versatile Image
Condition Efficient Denoise Condition

Tune-A-Video [41] ✗ ✗ ✗ ✗ ✗ ✓
LVDM [9] ✓ ✗ ✗ ✗ ✗ ✗

NUWA-XL [43] ✓ ✓ ✗ ✓ ✗ ✗
Gen-L-Video [36] ✓ ✓ ✓ ✓ ✓ ✗

Animate-A-Story [10] ✓ ✓ ✗ ✓ ✓ ✓
FreeNoise [26] ✓ ✓ ✓ ✓ ✓ ✗

Corgi (ours) ✓ ✓ ✓ ✓ ✓ ✓

multi-subject driven customization with LoRA finetuning.
CustomVideo [39] proposes a co-occurrence and attention
mechanism to disentangle multi-subject customization.

Our work tackles multi-scene video generation with cus-
tomization and focuses on global coherence across all video
clips. Our approach finetunes the T2I base model following
Dreambooth [29] and selectively stores intermediate latents
in a memory bank to guide multi-scene video generation.

3. Method

We propose a multi-scene video generation method. In con-
trast to existing long video generation methods that generate
thousands of frames simultaneously, which often results in
temporal inconsistency, we sample the videos clip-by-clip
sequentially. As shown in Fig. 2, given multimodal input
of reference images and an instruction prompt, we finetune
EMU [30], a diffusion T2I model (Stage 1), to generate and
selectively cache the key frames (Stage 2) which are then
used for sampling long videos clip-by-clip (Stage 3).

3.1. Problem Formulation

Given a set of reference images and an instruction prompt,
we aim to generate multi-scene videos with a cached la-
tent bank serving as the memory guidance. Concretely,
let X = {x1, x2, ..., xr} denote a set of reference images,
where r typically ranges between 3 and 5, let Pinstruct de-
note the instruction prompt. With the reference images
xk
r as input, the Multimodal-LLM (MLLM) produces story

prompts Pstory = {p1, p2, ..., pn}. Our core component is a
cached latent memory bank B = {z1, z2, ..., zn}, where
each zi represents the latent generated by the finetuned
T2I model x̂θ corresponding to the i-th story prompt pi
from the MLLM. Our goal is to generate n video clips
{v1, v2, ..., vn} with N frames each (N = 16 in our set-
ting), each based on one pair of story prompt pk and cached
latent zk. The final long multi-scene video is obtained by
concatenating the n generated video clips.

3.2. Pipeline Overview

Our Corgi framework, featuring the core component of a
cached latent memory bank, is illustrated in Fig. 2. It con-
sists of three stages: finetuning (Stage 1, Sec. 3.3), caching
(Stage 2, Sec. 3.4), and sampling (Stage 3, Sec. 3.4).

For stage 1, given a set of 3-5 reference images of a
subject along with an instruction prompt Pinstruct, we use a
Multimodal-LLM (MLLM) [1, 21] to produce a set of story
prompts Pstory, leveraging its multimodal understanding ca-
pabilities. Concurrently, the base T2I model x̂θ is finetuned
using the reference images to generate a sequence of inter-
mediate images xgen,i = x̂θ(ϵ, ci), each corresponding to
different story prompts. ci is the text embedding, generated
by the text encoder with story prompt pi.

For stage 2, the latent zi of xgen,i is obtained via a pre-
trained Variational Autoencoder (VAE) [16] and is further
stored in a cached latent memory bank. The latents serve as
the basis of the initial image conditioning and, along with
the story prompts, guide the video generation process.

For stage 3, we introduce motion dynamics to person-
alized T2I models via a pretrained off-the-shelf temporal
transformer with self-attention blocks operating on the tem-
poral axis. Trained on video clips, the temporal layers cap-
ture and distill motion priors. We obtain our multi-scene
video with the concatenation of generated video clips.

3.3. Subject-Guided Finetuning

One challenge of multi-scene video generation is that the re-
lationship between the reference images and text prompts is
not always straightforward, and there is an inherent trade-
off between these two conditioning sources. We propose
customizing video generation at the T2I level without fine-
tuning the temporal layers, since motion representations are
agnostic to object appearance customization and primarily
capture temporal changes in visual content.

We use subject-guided finetuning [29] for T2I model
to encode the visual representations of reference images.
Given 3 - 5 images of a new subject (e.g. “corgi”), our
objective is to embed it into the output domain of the pre-
trained T2I model, similar to adding a new concept to the
memory space of diffusion models. With pretrained T2I dif-
fusion model x̂θ and ground-truth image x, the finetuning
objective is:

Ex,c,ϵ,ϵ′,t[wt∥x̂θ(αtx+ σtϵ, c)− x∥22+
λwt′∥x̂θ(αt′xpr + σt′ϵ

′, cpr)− xpr∥22],
(1)

where c = τθ(p) is the conditioning vector, and ϵ ∼
N (0, I) is the initial noise, αt, σt, wt control the noise
schedule and sample quality. xpr is from the pretrained
and frozen T2I model. cpr := τθ(f(“a [name of class]”))
is the text conditioning vector. We use unique tokens (e.g.,
V* for “A V* dog”)) in text descriptions which has min-
imal prior in both the pretrained text encoders and diffu-
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Figure 2. Corgi pipeline. Given a set of reference images and instruction prompt, we use Multimodal-LLM (MLLM) [21, 22] to generate
arbitary number of story lines. We fine-tune the pretrained T2I diffusion model and store the generated key frame latents to a cached latent
memory bank to maintain visual faithfulness and long-term consistency. The final multi-scene video is the concatenation of video clips
based on each story prompt.

sion models. More details on the fine-tuning preliminaries
can be found in Appendix Sec. B. As shown in Fig. 2, we
perform subject-guided finetuning on T2I model in stage 1.
During inference, intermediate images are generated condi-
tioned on the story prompts, and their latents are cached in a
cached latent memory bank to serve as keyframe (Sec. 3.4).

3.4. Cached Latent Memory Bank

We introduce the cache latent memory bank mechanism,
a core component of our method, to improve faithfulness,
consistency, and diversity of the generated videos. Since
a single keyframe often falls short in representing the en-
tire multi-scene long videos, our method generates subject-
consistent multi-scene videos based on multiple latents as
memories from the finetuned T2I base model and selec-
tively cached in the bank.

We preserve long-term subject-consistency through
cached latent memory bank B, and we explicitly encour-
age the generated results to share a cohesive global visual
appearance across all video clips. As defined in Sec. 3.1,
the latent bank B = {z1, ..., zn} caches n latents. Each
latent zi is encoded via a pretrained VAE [16] from inter-
mediate image xgen,i. Intermediate images are generated by
the finetuned T2I model customized for the reference im-
ages (Sec. 3.3) and conditioned on the story prompt pi. We
use a memory bank to cache the latents and preserve the
visual representations of the target subject, enabling mem-
orization capability and therefore allowing us to generate
infinitely long multi-scene videos.

Coverage Caching. To avoid repetitiveness and improve
diversity in backgrounds, poses, etc., we selectively pre-
serve and suppress information through the memory bank.
The caching process begins by saving the latent of the
first generated intermediate image xgen,0 = x̂θ(ϵ, c0). For

each subsequent generation conditioned on the same story
prompt, we sample k times to obtain k latents (in practice
we use k = 10). We compute the Euclidean distance from
these new latents to the center of the existing latents in the
bank, and the one that is farthest from its predecessors is
then selected and cached. The coverage score can be for-
mulated as:

D = ∥znew − zcentroid∥, (2)

where zcentroid = 1
r

∑r
i=1 zi is the center of all existing

cached latents.
This coverage caching, conducted within the compact

and manipulable VAE latent space, aims to maximize the
coverage of the cached latents. The diversity is greatly im-
proved and can be propagated to the multi-scene video gen-
eration next step. Furthermore, it introduces another layer
of flexibility in user interaction and customization. This
process maximizes coverage- and diversity-based measures
in the feature space and the diverse range of latents con-
tributes to consistent and diverse video output.

Cached Latent Conditioning. During sampling, we con-
catenate cached latents with random noise across video
frames with a gradually decreasing weight over the frames.
By leveraging the cached latents as control signals during
the denoising process, we can achieve fine-grained con-
trol over generated images rather than relying solely on
prompts. To condition on the cached latent signals during
the video generation process, we add weighted zi, which
corresponding to ith video scene/clip, to all the frame noise
ϵk and construct the input for the model as:

ϵ̂ = {ϵ1 + λ1zi, ϵ2 + λ2zi, ..., ϵN + λNzi}, (3)

{λk}Nk=1 are weights that control how much influence the
cached latent will have on the generation of subsequent
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frames and N is the maximum number of frames for each
clip. Considering a minimum value m, the formula for λk

would be:

λk = λ0 − k ×
(
λ0 −m

N − 1

)
, (4)

λk starts with the highest value for λ1 (in our setting,
λ1=0.02) and then decreases at a constant rate for each
subsequent frame. This is primarily because as the video
evolves, the visual appearance is expected to change and
move away from the first frame while still remaining faith-
ful to the text descriptions. Thus, the weight of the cached
latent should be decreased proportionally. The decreasing
weight allows a smooth transition from strict visual consis-
tency with the input references in early frames to increased
diversity and flexibility in later frames, enabling a natural
progression of the scene. While maintaining overall faith-
fulness to input subjects, strictly stick to their exact visual
details is unnecessary. Text descriptions provide richer in-
formation and guide precise attribute & motion generation.

Clip-by-clip Sampling. We use pretrained temporal
transformers which consists of several self-attention blocks
along the temporal axis to insert motion dynamics into the
finetuned T2I model. The attention mechanism allows the
generation of the current frame to include information from
other frames, capturing the visual content changes over time
that constitute motion dynamics in an animation clip. Given
the hidden state zk of the k-th frame, the self-attention can
be formulated as:

Q = WQzk,K = WKzk, V = WV zk, (5)

Attention(Q,K, V ) = Softmax(
QK⊤
√
dk

)V, (6)

where WQ,WK and WV are projection matrices. dk is the
dimension of the query and key vectors. To improve consis-
tency and faithfulness of the generated video, we adjust the
key and value vectors in the self-attention layers to include
features from the corresponding cached latent zi (⊕ is the
concatenation operation):

Q = WQzk,K
′ = WK(zk⊕z′i), V

′ = WV (zk⊕z′i). (7)

Cached latents zi are passed through UNet to get noised
and obtain features z′i with correct spatial and channel di-
mensions. Then z′i are concatenated with the intermediate
UNet features of frame zk along feature dimension. Con-
catenating intermediate UNet features with cached latents
provides motion module with semantic information about
target subjects, allowing it to capture semantics from cached
latents. Serving as a “memory” of target subjects, this
builds inter-frame correspondences, and guides consistent
and faithful generation while allows motion dynamics.

Through this finetuning and caching process, our method
is able to embed the unique features of target subjects and

generate videos that are consistent across scenes and remain
faithful to the reference images, thereby improving overall
generation quality. After generating n video clips, we can
then concatenate the clips into a long multi-scene video.

4. Experiments
In this section, we first discuss our experiment setup
(Sec. 4.1) and evaluation metrics (Sec. 4.2). Then we con-
duct qualitative and quantitative evaluations and compare
it with the latest state-of-the-art methods (Sec. 4.3). Fur-
thermore, we perform ablation studies on cached latents to
evaluate their impact on the diversity of generated videos
(Sec. 4.4). Finally, we conduct a human evaluation study
and provide the results (Sec. 4.5).

4.1. Evaluation Test-Bed

Datasets. We collect a dataset of 21 subjects, named Main-
Character21, which includes unique subjects such as dogs,
cats, stuffed animals, etc. For each subject, we provide 3
- 5 sample images, along with an instruction prompt (See
Sec. C in the Appendix for examples). To robustly measure
the performance of our method, we generate five video clips
for each story prompt and report their average performance.

Implementation Details. Our pipeline builds upon
EMU [30] foundation set. We finetune the EMU T2I base
model with data from MainCharacter21. The learning rate
was set to 5 × 10−6, with a batch size of 4, over a total
of 400 optimization steps. The hyperparameter minimum
value m in Eqn. 4, is adjusted based on the output perfor-
mance and typically falls within the range of 0.005 to 0.001.
Each video clip we generated contains 16 frames at a 512
× 512 resolution. We use the DDIM [32] sampler with 50
steps and classifier-free guidance [11] with a scale of 7.5.
We save the video at a rate of 8 FPS.

Runtime. The subject-guided finetuning process takes
roughly 2 minutes for one set of 3 to 5 images. On average,
caching a single latent takes 33 seconds, as the process in-
volves sampling k = 10 times and selectively caching one
latent, with the caching process itself varying in duration.
For clip-by-clip sampling, the average time spent generat-
ing each video clip is approximately 2 to 2.5 minutes.

4.2. Metrics

The three aspects we evaluate are: consistency (short/long-
term), faithfulness (visual/textual), diversity (realistic shot
change [43]).

Consistency: We evaluate the multi-scene video gener-
ation for both short-term and long-term consistency. Long-
term consistency verifies that the subjects (a.k.a. protago-
nists) remain unchanged throughout the entire video, while
Short-term consistency aims to have smooth transition be-
tween individual consecutive within a single video clip.
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For long-term consistency, we segment target subjects
using SAM [17], extract frame embeddings with CLIP ViT-
B [27], and measure semantic similarity of the subjects
across all video clips via average cosine similarity:

1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

cos(s̄i, s̄j), s̄i =
1

N

N∑
k=1

CLIP(si,k),

where n is the number of video clips. s̄i is the average
subject embedding for clip i: where si,k is the segmented
subject in the k-th frame of the i-th video clip and N is
number of frames within each video clip. cos(a, b) is the
cosine similarity between vectors a and b and is defined as
cos(a, b) = a·b

∥a∥∥b∥ .
For short-term consistency, as the CLIP embedding met-

ric is not constructed to distinguish between highly simi-
lar text descriptions, not to mention the same text prompt,
we use DINO [3, 24] following [29] to compute the av-
erage cosine similarity of consecutive frames within one
video clip using ViT-S/16 DINO embeddings. The self-
supervised training objective of DINO encourages distinc-
tion of subject-wise unique features and thus helps measure
how similar adjacent frames are. For each video clip, the
short-term consistency score is:

1

N − 1

N−1∑
i=1

cos(DINO(fi),DINO(fi+1)),

here, fi is the frames of the video clips.
Faithfulness: We evaluate both textual and visual faith-

fulness of the generated videos. Following [5, 19], we
quantify textual faithfulness, which is the semantic correla-
tion between the generated videos and their corresponding
story prompts. It is computed by the cosine similarity be-
tween the CLIP text embeddings and the CLIP image em-
beddings of each frame; then we average the scores from
all frames to obtain the alignment score between a text and
a generated video clip. Similarly, for visual faithfulness,
we compute the average pairwise cosine similarity between
the CLIP embeddings of each frame of the generated clip
and the reference image. We do not use DINO embeddings
because unlike CLIP, its visual self-supervised pretraining
objective does not explicitly model subject semantics and
focuses more on pixel-wise details. However, our goal of
visual faithfulness is not to generate videos that look ex-
actly like the subjects’ poses from the reference images but
to focus more on semantic similarity [3].

Diversity: Multi-scene videos should not only be con-
sistent and faithful, but should also include realistic shot
changes [43] to avoid monotony. We analyze different
scenes and character actions within the video. Following
Lamp [42], we use generation diversity metrics to evaluate
the distinctiveness of consecutive video clips. Each video
is represented by the average CLIP image embedding of all

Table 2. Baseline Comparisons. We compare our method
with open-sourced multi-scene video generation methods Base-
line 1 and Baseline 2. All results are presented as percentage val-
ues. Note that the visual faithfulness metric is not applicable to the
baseline methods as they do not condition on image inputs. Our
method significantly outperforms baselines by a large margin.

Method Consistency (↓) Faithfulness (↑) Diversity (↑)

Short-term Long-term Visual Textual

Baseline 1 30.53 ± 7.41 28.51 ± 5.49 – 32.76 ± 3.49 42.26 ± 2.98
Baseline 2 28.97 ± 4.12 32.83 ± 7.33 – 21.18 ± 0.48 49.12 ± 5.92

Corgi (ours) 12.58 ± 5.76 11.63 ± 5.23 85.83 ± 6.38 37.11 ± 4.27 52.84 ± 3.28

of its frames. We then calculate and average the cosine dis-
tances across all pairs of videos. Lower scores mean less
similarity and better diversity. Each video is represented by
the average CLIP image embedding of all of its frames. Di-
versity is calculated by the average cosine distance across
all video pairs:

1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

(1−cos(v̄i, v̄j)), v̄i =
1

N

N∑
k=1

CLIP(fi,k),

where v̄i is the average embedding for the i-th video clip,
and fi,k is the k-th frame of the i-th video clip.

4.3. Results

Baselines. We compare Corgi with two SOTA meth-
ods: (i) Baseline 11, which introduces a training-free noise
rescheduling approach for long video generation, and (ii)
Baseline 2, which treats long videos as temporally overlap-
ping short videos and generates long videos with existing
short T2V models.

Quantitative Results. For quantitative comparisons, fol-
lowing the evaluation metrics introduced in Sec. 4.2, we
evaluate the consistency, faithfulness, and diversity of the
generated results. As shown in Tab. 2, Corgi is especially
strong in both short-term and long-term consistency, achiev-
ing average scores of 12.58% and 11.63%, respectively. It
shows an improvement of 56.58% in short-term and 59.21%
in long-term consistency, outperforming baselines by a
large margin. Furthermore, while Baseline 2 shows a com-
petitive edge in diversity with a score of 49.12%, our ap-
proach has a 7.57% increase over this next best-performing
method, achieving a diversity score of 52.84%. Our exper-
iments demonstrate the robustness of our method in gener-
ating consistent and faithful videos while also showing its
capability to improve diversity, making it a well-rounded
pipeline for multi-scene video generation.

Qualitative Results. In Figs. 3 & 4, we show a few sam-
ples of our generated results, as well as comparisons with
the baseline methods. Fig. 3 presents multi-scene video
frames generated using our Corgi method, highlighting our
model’s strength in maintaining consistency, faithfulness,

1Baseline details have not been disclosed due to legal considerations.
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He hops onto his red bike, pedaling through the bustling 
streets to see his friends

1

There, he waits for his friends' arrival at the window, 
wondering what adventures they'll have today

A teddy bear, still sleepy-eyed, wakes up in his cozy 
little bed, stretching out his fluffy arms

2

4

1

With a swift paw, she fished it out, and the cheese was a 
satisfying memory

Whiskers the cat found her bowl empty, her stomach grumbling 
a little tune of hunger

Generated Multi-scene videosInput 

Images She prowled the kitchen, sniffing the air for a stray 

crumb or a forgotten treat 

Her eyes gleamed as they spotted a cheese3

At the mall, he wanders around a bit, checking out the 
colorful store windows

3

Figure 3. Multi-scene video generation results. We present two sets of multi-scene video sample frames generated via our Corgi method.
The input reference images used for customization are provided (left), and the instruction prompt we used for MLLM is: Based on
this image, generate a 10-sentence story. Due to space constraints, we only show 4 out of the 10 scenes and leave the
rest in the supplementary folder. We provide the generated story prompts at the top of each video clip.

and diversity. In Fig. 4, we offer a side-by-side comparison
of video clips from Baseline 1 (left) and our Corgi (right),
using the same multi-scene prompts for fair comparisons.

4.4. Ablation Study

We conduct an ablation study to measure the effective-
ness of coverage selection strategy used during the caching
stage. Specifically, we compare the performance of two
variants: (1) latents saved without coverage score selec-
tion and (2) latents selected based on our proposed coverage
caching mechanism. The primary goal of this ablation is to
evaluate the impact of our caching strategies on the diversity
and overall performance of the generated videos. We pro-
vide quantitative results in Tab. 3 and qualitative results in
Fig. 5. The performance of both approaches demonstrated

negligible differences in consistency and faithfulness, yet
coverage-score selected latents significantly boost the di-
versity of multi-scene videos. These results suggest that our
coverage selection based caching effectively propagates the
cached image latent quality to multi-scene video generation
and is a more effective strategy to prioritize diversity. As
shown in Fig. 5, latents selected with coverage score help
avoid generating videos with similar poses, sizes or facing
directions, leading to an overall quality improvement. Ad-
ditional ablation studies are provided in Appendix Sec. A.

4.5. Human Evaluation

We conduct human evaluations for our method against sev-
eral baselines. Each pair of generated results was eval-
uated by five participants, including both experts in the
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A cat was swimming in the pool, enjoying its sunny afternoon

Input 

Images

After swimming, cat was happy and playful, eager eager to explore and have fun

(A) Baseline 1

The baby owl took a deep breath, feeling the cool air fill its lungs.

Then, with a determined flap of its wings, the baby owl soared into the sky

(B) Corgi (ours)

Generated Multi-scene videos

Figure 4. Qualitative results. We present side-by-side comparisons of video clips generated by Baseline 1 (left) and our Corgi method
(right). We provided two sets of input images and use the same multi-scene prompts for both methods for fair comparisons. Note that
Baseline 1 does not condition on the image inputs. Our method shows significantly better visual quality and realistic motion changes.

Then, with a determined flap of its 
wings, the baby owl soared into the sky

Under the beautiful night sky, a baby 
owl blinked its wide, curious eyes.

ra
nd

om
se

le
ct

ed

The moment was approaching for 
its very first flight.

The baby owl took a deep breath, 
feeling the cool air fill its lungs. 

C
ac

he
d

 L
at

en
ts

Generated Multi-scene videos

Figure 5. Ablation study on Cached Latent Selection. We examine two variants: (1) latents saved without coverage score selection
(Random), (2) latents selected based on our proposed coverage caching mechanism (Selected). For Random ones, the owls in the
generated samples all face roughly the same direction (right), while Selected ones introduces more diversity of poses (e.g., flying, sitting)
and directions (left).

field and individuals without specific background knowl-
edge. Our evaluation set includes 21 pairs of generated re-
sults from Corgi and open-source baseline methods (Base-
line 1 and Baseline 2), as well as generated multi-scene
video samples from closed-source methods (three videos
from Baseline 3 and five videos from Baseline 4), where
we directly use the provided prompts for generation. For

comparisons with Baseline 1 and Baseline 2, we collected
105 responses (21 video pairs, evaluated by 5 participants),
and for Baseline 3 and Baseline 4, we had 15 (3 video pairs,
evaluated by 5 participants) and 25 (5 video pairs, evalu-
ated by 5 participants) responses, respectively. We mixed
our generated results with those from baselines, present-
ing the participants with story prompts and corresponding
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Table 3. Ablation on Cached Latent Selection. We conduct
an ablation study on cached latents, comparing those without a
coverage score selection mechanism (Random) and those with it
(Selected). The results show that latents selected based on a cov-
erage score significantly improve the video diversity.

Consistency (↓) Faithfulness (↑) Diversity (↑)
Cached Latents Short-term Long-term Visual Textual

Random 11.64 ± 5.89 10.85 ± 6.71 85.33 ± 5.91 36.58 ± 3.49 40.27 ± 4.12
Selected 12.58 ± 5.76 11.63 ± 5.23 85.83 ± 6.38 37.11 ± 4.27 52.84 ± 3.28

Table 4. Human Preference. We conduct a human evaluation to
compare our Corgi method against four baseline methods: Base-
line 1 (B1), Baseline 2 (B2), Baseline 3 (B3), and Baseline 4 (B4).
In each paired comparison, our method was preferred predomi-
nantly (over 50%) over the baselines across various metrics. It
is important to note that F and G do not utilize input images for
conditioning, hence visual faithfulness was not evaluated for these
methods. For B3 due to limited access to only one set of images
used for generating a single video, we report the visual faithful-
ness score solely for this specific comparison.

Evaluation (%) Ours > B1 Ours > B2 Ours > B3 Ours > B4

Consistency Short 87.62 77.14 66.67 88.00
Long 84.76 94.28 46.67 92.00

Faithfulness Visual – – 40.00 96.00
Textual 63.81 78.09 60.00 84.00

Diversity 63.81 70.48 53.33 84.00
Overall Quality 81.90 84.76 66.67 92.00

videos generated by these methods in a randomized or-
der. Participants were prompted to compare the consis-
tency, faithfulness, diversity, and overall video quality of
the multi-scene videos, asking, e.g., “Which video is more
consistent/faithful/diverse/has higher quality?” We present
the proportion of samples where a higher number of users
preferred our examples as being better in Tab. 4. The re-
sults show that our Corgi method consistently outperforms
the baseline methods across key metrics. Particularly no-
table are its high preference scores in both short-term and
long-term consistency, as well as diversity score and overall
video quality, with a remarkable 92% preference over Base-
line 4 for overall quality. Although Corgi shows a lower
preference in visual faithfulness and long-term consistency
compared to Baseline 3, this may be due to the limited com-
parison set, as we had access to only one group of con-
ditioning images from Baseline 3. These results show the
effectiveness of Corgi in multi-scene video generation.

5. Limitations

While our method offers promising results in multi-scene
video generation, it still has its limitations. For example, we
observed that when novel subjects in the story prompts are
not specified, e.g., in Fig. 6 (A), with only the corgi images
as input, the generated results will merge the features of
multiple subjects (corgi and squirrel). Another failure case
we observed is if in the input images, there is always some

part attached to the target subject (e.g., in Fig. 6 (B), the tree
branch is attached to the owl), then this feature will be prop-
agated via the cached latents to the final generated videos.
Additionally, our diversity metric does not capture whether
this diversity aligns with the intended story. As in some
cases, it could be preferable for subsequent clips to have
similar visual content. Quantifying “desirable” or “reason-
able” diversity is subjective and context-dependent. An in-
teractive UI is ideal but beyond our scope. Future work
e.g. adaptive weighting or human-in-the-loop approaches
for user-selected intermediate images could further improve
quality. These challenges open up new opportunities for fu-
ture research exploration.

(A) A corgi saw a squirrel and chases after it. (B) A baby owl learns how to fly.

Figure 6. Limitations. Feature disentanglement for image-
conditioned video generation still remains challenging. As shown
in (A), the features of a corgi and a squirrel are mistakenly com-
bined when the input images only includes the corgi. Additionally,
in (B), the base T2I model’s limitations in contextual understand-
ing and a tendency to overfit to features that appear across all im-
ages used for fine-tuning result in incorrect feature attachment.

Negative Impact. While our method aims to enable multi-
scene video generation, there is a risk that it could be ex-
ploited to create misleading or inappropriate content, which
underscores the need for robust filters and stricter regulatory
frameworks to prevent misuse in the future.

6. Conclusion
In summary, we propose Corgi, a multi-scene video gener-
ation method that takes multimodal inputs to create coher-
ent multi-scene videos. We introduce a cached latent mem-
ory bank module to selectively store the customized latents
from the finetuned T2I model and guide the multi-scene
generation process. Our experiments show that Corgi can
generate results that maintain a high level of consistency,
faithfulness, and diversity throughout the entire multi-scene
video. We hope that the cached latent memory bank can
serve as an essential building block for multi-scene video
generation, and the insights we have gathered can provide a
strong basis for future research in this field.
Acknowledgments. We thank many people for their helpful discussion
and feedback, listed in alphabetical order by last name: Meta GenAI (Ro-
hit Girdhar, Sachit Menon, Ishan Misra), Princeton Visual AI lab (Allison
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Supplementary Material
Corgi: Cached Memory Guided Video Generation

Overview
In this supplement, we first extend ablation study to ana-
lyze different aspects of Corgi and their influence on overall
performance in Sec. A. Additional preliminary details for
subject-guided finetuning are provided in Sec. B and details
of our customized dataset MainCharacter21 are in Sec. C.

A. Additional Ablation Study
In the main paper, we provide ablation studies to evaluate
the impact of coverage-based selective caching (Sec. 4.4).
Here we ablate two other method design choices of Corgi:
cached latent conditioning and clip-by-clip sampling.

Cached Latent Conditioning. In our proposed method,
cached latent conditioning plays an important role in con-
trolling the generation process across video clips. To eval-
uate the effectiveness of this design choice, we conduct ab-
lation studies to compare different scenarios:
1. Removing linear weight degradation (as in Eqn. 4) and

maintaining a constant degree of influence across all
frames, thus λk = 0.02 (Constant).

2. Setting the initial weight (λ0) too low while still main-
taining the linear weight degradation, reducing the
cached latent influence, which may result in generated
videos that are not visually faithful to the input subjects,
λ0 = 0.002 (Low).

3. Setting the initial weight (λ0) too high while still main-
taining the linear weight degradation, resulting in cached
latents having an excessive influence on the generated
frames, potentially limiting diversity, λ0 = 0.5 (High).

4. Using the default setting with linear weight degradation,
λ0 = 0.02 (Linear).
As shown in Tab. 5 and Fig. 7, linear weight degrada-

tion enables for a gradual transition, allowing the generated
frames to deviate from the initial frame while still main-
taining visual faithfulness to the input subjects. However,
maintaining a constant degree of influence across all frames,
without the linear weight degradation, leads to an overly
rigid adherence to the cached latents. This affects the natu-
ral transition of the generated videos, resulting in minimal
motion movement throughout the clips. Setting the cached
latents weight too high limits diversity by overly constrain-
ing the content to the initial frame cached latents, while a
too low weight diminishes visual faithfulness and consis-
tency as frames have little influence from cached latents,
deviating from earlier frames, both compromising overall
video consistency. While constant weight outperforms oth-
ers in terms of short-term consistency and visual faithful-
ness as expected, it significantly affected diversity and long-

term consistency.

Table 5. Ablation on Cached Latent Conditioning. We
compare different scenarios: constant weight (Constant), low
weight (Low), high weight (High) and linear weight degradation
(Linear). The results show that our proposed linear weight degra-
dation approach achieves the optimal tradeoff of consistency, faith-
fulness, and diversity.

Consistency (↓) Faithfulness (↑) Diversity (↑)
Weight Setting Short-term Long-term Visual Textual

Constant 7.42 ± 4.37 17.93 ± 5.02 86.44 ± 8.24 35.94 ± 5.73 38.64 ± 6.74
Low 21.36 ± 6.15 23.48 ± 4.63 75.89 ± 8.06 32.18 ± 7.93 49.27 ± 5.15
High 8.57 ± 5.82 25.14 ± 4.85 54.38 ± 9.53 21.49 ± 3.81 34.96 ± 7.36

Linear (ours) 12.58 ± 5.76 11.63 ± 5.23 85.83 ± 6.38 37.11 ± 4.27 52.84 ± 3.28

Clip-by-clip Sampling. Furthermore, we conduct an abla-
tion study to evaluate the impact of the self-attention op-
eration with cached latents concatenation in clip-by-clip
sampling. Keeping the same experiment settings for other
parts, we evaluate w/ concatenation (Eqn. 5) and w/o con-
catenation (Eqn. 7), the results are in Tab. 6. Our abla-
tion study shows that incorporating the proposed cached la-
tent concatenation for self-attention improves performance.
When the cached latent concatenation was omitted for self-
attention, the ability to preserve the visual appearance of
the input subjects was largely weakened and it frequently
results in jittery motion and object distortions (Fig. 8).
Table 6. Ablation on Clip-by-Clip Sampling. We conduct an
ablation study on self-attention concatenation during clip-by-clip
sampling, comparing scenarios with and without cached latent
concatenation. The results show that with concatenation improves
video quality and consistency. The ✓denotes using concatenation.

Consistency (↓) Faithfulness (↑) Diversity (↑)
Concatenation Short-term Long-term Visual Textual

✓ 12.58 ± 5.76 11.63 ± 5.23 85.83 ± 6.38 37.11 ± 4.27 52.84 ± 3.28
14.31 ± 6.58 12.95 ± 4.17 74.23 ± 7.82 40.03 ± 5.22 50.17 ± 5.39

B. Finetuning Preliminary

Here we provide additional preliminary details for the
subject-guided finetuning [29]. Diffusion models are a type
of probabilistic generative model designed to learn data dis-
tributions. They achieve this by progressively denoising a
sample initially drawn from a Gaussian distribution, effec-
tively reducing its noise through each step of the process.
As denoted in Sec. 3.2, with pretrained T2I diffusion model
x̂θ and conditioning vector c = τθ(p), and initial noise map
ϵ drawn from a normal distribution N (0, I), as well as the
ground-truth image x, the original training objective is:

Ex,c,ϵ,t

[
wt∥x̂θ(αtx+ σtϵ, c)− x∥22

]
, (8)
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Generated Multi-scene videos

When it was time for a nap, she 
curl up in her cozy bed.

Holly the hedgehog wore a crown 
of crystal spikes, each one 
twinkling like a little star.

At lunch, Holly shared her berries 
with the ants, who admired her 
colorful spikes.

Every day, she would visit her 
friend, another hedgehog who 
lived in the oak tree.

Figure 7. Ablation study on Cached Latent Conditioning. We examine different weight settings for cached latent conditioning: constant
weight across all frames (Constant), low weight (Low), high weight (High), linear weight degradation (Linear). The Linear approach
achieves the best balance between consistency, faithfulness, and diversity. Constant leads to overly rigid adherence and the videos have
minimum motion and appear similar to static images rather than dynamic video sequences, High limits diversity and the generated results
look unrealistic, and Low diminishes visual faithfulness to input subjects.
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Generated Multi-scene videos

The water glimmered, turning gold 
and pink as the sun dipped lower

Fiona the flamingo stood gracefully 
on her legs, her feathers a fiery 
orange against the setting sun

She loved to watch the ripples in 
the water, each one telling a story 

One by one, her friends flew in, 
splashing softly in the shallow waters

Figure 8. Ablation study on Clip-by-Clip Sampling. We compare the impact of cached latent conditioning on the generated videos. The
model without cached latent (w/o concatenation) suffers from jittery motion and object distortions, while the model with cached latent
(w/ concatenation) maintains visual appearance of input subjects and generates more stable and high-quality videos. This demonstrates
the effectiveness of the proposed clip-by-clip sampling approach in preserving visual consistency and faithfulness to the input subjects.

αt, σt, wt control the noise schedule and sample quality.
We follow Dreambooth [29] and leverage the class-specific
prior preservation loss during finetuning:

Ex,c,ϵ,ϵ′,t[wt′∥x̂θ(αt′xpr + σt′ϵ
′, cpr)− xpr∥22], (9)

where xpr = x̂(zt1 , cpr) from the pretrained and frozen
T2I model. zt1 ∼ N (0, I) is random initial noise and
cpr := τθ(f(”a [name of class]”)) is a conditioning vector.
The loss of T2I finetuning is the combination of the both
training objectives above:

2



Figure 9. MainCharacter21. This figure illustrates our dataset MainCharacter21, including images from 21 distinct subjects, with three
sample images per subject.

Ex,c,ϵ,ϵ′,t[wt∥x̂θ(αtx+ σtϵ, c)− x∥22+
λwt′∥x̂θ(αt′xpr + σt′ϵ

′, cpr)− xpr∥22].
(10)

C. MainCharacter21
In our study, we introduce the MainCharacter21 dataset,
including 21 unique subjects, with each subject represented
by 3 to 5 images. Fig. 9 shows three images of each subject.
We show a list of sample instruction prompts (Tab. 7) used
to generate story prompts, along with three example story
prompts (Tab. 8, 9, 10) created by MLLM [21, 22] given
instruction prompts. It is important to note that, as we use
rare tokens (e.g. V*) plus subjects during the T2I finetun-
ing stage, we similarly added the rare tokens to the story
prompts before subjects and pronouns in the story prompts
were adjusted accordingly during inference.

Table 7. Sample Instruction Prompts

Inspired by the photo, write a story for a children’s
book, consisting of 7 sentences.
Write a 9-sentence tale about two individuals reuniting
under surprising circumstances using the image as
inspiration.
Narrate a 4-sentence adventure about discovering
something invaluable, drawing inspiration from the
image.
Craft a 5-sentence story about unexpected turns in life,
drawing from the image’s atmosphere.
Using the image as a foundation, write a 9-sentence tale
about a life lesson.
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Table 8. Sample Story Prompts 1

Sidney the squirrel scurried around the park, his little
heart full of glee.
He found a perfect acorn, shiny and brown, right for
tea.
His fluffy tail flickered as he nibbled away, happy as
can be.
He played peek-a-boo with the children, who laughed
merrily.
Sidney had a secret stash, hidden under the oak tree.
He’d jump from branch to branch, the leaves whispering,
"Catch me!"
His friends, the birds, would sing as he danced.
When it rained, he snuggle in his cozy warm and dry.
And as the stars appeared, Sidney would dream of
tomorrow’s joyous spree.

Table 9. Sample Story Prompts 2

Holly the hedgehog wore a crown of crystal spikes, each
one twinkling like a little star.
She loved to explore the garden, her crown catching the
light and casting rainbows everywhere.
She snuffled through the leaves, her tiny feet padding
softly on the earth.
Every day, Holly would visit her friend, another
hedgehog who lived in the oak tree.
At lunch, Holly shared her berries with the ants, who
admired her colorful spikes.
In the evening, Holly would sit and watch the stars, her
crown shimmering along with them.
When it was time for a nap, she curl up in her cozy bed.

Table 10. Sample Story Prompts 3

Fiona the flamingo stood gracefully on her legs, her
feathers a fiery orange against the setting sun.
She loved to watch the ripples in the water, each one
telling a story.
One by one, her friends flew in, splashing softly in the
shallow waters.
The water glimmered, turning gold and pink as the sun
dipped lower.
Fiona and her friend danced in the twilight, creating a
whirlpool of colors with their wings.
As the stars began to twinkle, she settled down,
nestling together in the warm sand.
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