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Abstract

In this paper, we analyze the trade-off between robust-
ness and accuracy in neural networks as a function of a
model’s ability to exploit data idiosyncrasy, that is, su-
perficial representations (which are imperceptible to hu-
mans) specific to samples’ distribution. Further, our anal-
ysis enables simple methods for improving the robust-
ness of a neural network against adversarial examples
by perturbing weights to reduce model dependency on
data idiosyncrasy. While the improvement of robustness
usually comes with minor degeneration of prediction ac-
curacy, as expected by our theoretical study, our method
improves the robustness of neural networks’ after the
models are already trained. As a result, this improvement
in robustness comes with marginal computational cost.

Introduction
Deep learning has achieved impressive, often superhuman,
empirical predictive accuracy on a variety of tasks, such
as object detection (He et al. 2015), speech recognition
(Xiong et al. 2016), and numerous biological challenges
(Yue and Wang 2018). Yet, a closer look into deep learn-
ing methods usually reveals that neural networks’ robust-
ness to imperceptible perturbations is far below human level
(Szegedy et al. 2013; Rosenfeld, Zemel, and Tsotsos 2018;
Wang, Sun, and Xing 2019), indicating that neural networks’
ability to automatically generalize “semantic” information
(as humans perceive data) may have been over-estimated.

With respect to accuracy, deep learning models can achieve
almost perfect training accuracy on datasets even when cor-
responding labels are shuffled (Zhang et al. 2017), which in-
dicates that neural networks can view data with much higher
granularity than humans. This disparity was further high-
lighted by (Jo and Bengio 2017), demonstrating the neural
networks’ tendency to capture information through textural
information other than “semantic” information. With respect
to robustness, dedicated designed subtle changes in data that
are imperceptible to humans (i.e. adversarial examples) can
easily demonstrate the lack of robustness of an otherwise-
accurate model (Szegedy et al. 2013; Goodfellow, Shlens,
and Szegedy 2015). This topic has historically alternated
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between authors defending models against adversarial exam-
ples (Cisse et al. 2017; Madry et al. 2018; Liao et al. 2018;
Wong and Kolter 2018) and others proposing new attack man-
ners that expose models’ new weakness (Goodfellow, Shlens,
and Szegedy 2015; Kurakin, Goodfellow, and Bengio 2017;
Moosavi-Dezfooli, Fawzi, and Frossard 2016; Papernot et al.
2016; Carlini and Wagner 2017b). With the attackers win-
ning this back-and-forth by increasingly large margins, some
researchers have become concerned that the existence of
adversarial examples may be inevitable (Shafahi et al. 2019).

In this paper, we explain the phenomenon of adversarial
examples as a direct outcome of deep learning’s capacity to
view data with higher granularity than humans, which we re-
fer as exploiting data idiosyncrasy. Considering this capacity,
we study deep learning behaviors as a combination of seman-
tically significant features and data idiosyncrasy, and use this
to help explain the trade-off between prediction accuracy and
robustness demonstrated with concrete examples by Tsipras
et al. (2019). Further, this regime inspires straightforward
methods to improve the robustness of a neural network after
the model is trained. Specifically, the contribution of this
paper can be summarized as:
• We set-up a generalization regime considering a machine

learning model’s ability to exploit data idiosyncrasy.
• On the theoretical side, this regime enables formal dis-

cussions of a given model’s trade-off between its predic-
tion accuracy and robustness. The formal discussion also
trivially leads to methods that can help improves trained
model’s robustness as a trade-off of its accuracy.

• As an application of our regime, we propose three simple
methods for improving robustness and demonstrate their
efficacy with experiments. Our methods are lightweight
and do not require the computational effort of training/fine-
tuning a model. Using these, we improve the robustness of
a trained AlexNet with minimal losses in accuracy.

Related Work
The robustness of many machine learning algorithms has
been studied, including neural networks (Bishop 1995), reg-
ularized regression (El Ghaoui and Lebret 1997; Xu, Cara-
manis, and Mannor 2009a), and SVMs (Xu, Caramanis, and
Mannor 2009b). In recent years, this topic has become partic-
ularly popular due to the phenomenon of the existance of ad-



versarial examples (Szegedy et al. 2013; Goodfellow, Shlens,
and Szegedy 2015; Kurakin, Goodfellow, and Bengio 2017;
Moosavi-Dezfooli, Fawzi, and Frossard 2016; Cisse et al.
2017; Carlini and Wagner 2017a; 2017b; Madry et al. 2018;
Xu, Evans, and Qi 2017; Liao et al. 2018; Wu et al. 2018;
Guo et al. 2018). This naturally leads to the question, are
adversarial examples inevitable?

Shafahi et al. (2019) argued that adversarial examples are
unavoidable. While it is impossible to analyze all real-world
data distributions, their paper’s empirical results suggest that
common distributions in nature lend themselves to adversar-
ial examples. Their argument clashes with a body of work
aiming to propose methods that can certify the robustness of
neural networks (Wong and Kolter 2018; Raghunathan, Stein-
hardt, and Liang 2018; Sinha, Namkoong, and Duchi 2018;
Wong et al. 2018). However, while achieving robustness,
these methods usually see a slight drop of prediction accu-
racy (Wong and Kolter 2018), leading to another interesting
question: are accuracy and robustness compatible? (Rozsa,
Günther, and Boult 2016) demonstrated that more accurate
models tend to be more robust on a set of vision models, but
later, with a more systematic study, (Hendrycks and Diet-
terich 2019) showed that the seemingly increased robustness
was skewed by the increased overall accuracy, and more
accurate vision models (e.g. VGG, ResNet) actually have
larger drops in performance when presented with adversar-
ial examples. Recently, (Wang et al. 2019b) showed that
high-frequency components of images can used in adversar-
ial attacks, further indicating a trade-off between a model’s
robustness and accuracy.

There is also a proliferation of works trying to understand
the behavior of neural networks with regard to robustness.
For example, (Sanyal, Kanade, and Torr 2018) showed that
representations with a low-rank structure tend to be more
robust. (Novak et al. 2018) related the robustness of a neural
network to its “input-output Jacobian”, which means the ex-
pectation of the magnitudes of the network’s output variations
over random input perturbations, supporting the arguments in
(Sokolić et al. 2017). In a recent brief note, (Nakkiran 2019)
argued that the robustness of a model may only be achiev-
able via sophisticated designs, which could be understood as
arguing that human-level robustness needs to be achieved by
human-level granularity of perceiving data.

Key difference: This paper aims to extend the discussion
of (Tsipras et al. 2019) in the trade-off between a model’s
robustness and accuracy to a more general setting that does
not rely on specific data distributions. Our argument relies
on the key assumption that the cause of the unsatisfying
robustness of neural networks is the perceptional disparity
between humans and models, which is related to (Nakkiran
2019).

Generalization with Data Idiosyncrasy
We first introduce the notations used in this paper: f(·;Θ)
denotes a classifier (e.g. a deep learning model) whose pa-
rameters are denoted as Θ, and Θ[·] denotes that the model
Θ operates on data · (i.e., Model Θ is trained with data ·);
we useH to denote a human model, and as a result, f(·;H)
denotes how human will classify the data ·.

l(·, ·) denotes a generic loss function (e.g. cross entropy
loss or MSE loss); α(·, ·) denotes a generic evaluation met-
ric (e.g. prediction accuracy). Throughout this paper, α(·, ·)
evaluates prediction accuracy unless specified otherwise.
〈X,y〉 denotes the raw data and corresponding labels,

and 〈x, y〉 denotes a data sample. We use 〈Xtrain,ytrain〉,
〈Xval,yval〉, and 〈Xtest,ytest〉 to denote training, validation,
and test data, respectively. We use 〈Xadv,ytest〉 to denote
the generated adversarial examples as a result of perturbing
testing data set, and we use Xadv(Θ) to denote that the adver-
sarial examples are generated while the attacking methods
are applied to Model Θ.

We follow (Tsipras et al. 2019), but instead of constructing
explicit features, we assume the raw data X = XG + XD +
XS , where XG denotes semantic information conveyed by
the data (e.g. the parts of an image that are perceptible to
humans), XD denotes the information that is statistically
associated with the label, but not semantically meaningful
to humans (e.g. background bias of the images)1, and XS
denotes the remaining non-predictive variation (i.e. noise).

These narrative descriptions of XG , XD, and XS are suf-
ficient for this paper’s discussion, but we also offer concrete
definitions to make our paper more complete: with the help
of ModelH, we can define XG , XD, and XS as follows.

XG := {xG |xG = argmax
x′

||x− x′||

s.t. f(x′;H) = f(x;H)}
XD := {xD |xD = argmax

x′
||x− xG − x′||

s.t. x′ = argmin
x′

∑
x′

l(f(xG + x′;Θ), y),∀Θ}

XS := {xS |xS = x− xG − xD}
(1)

We do not specify the choice of norms for the purpose of
a generic discussion, because adversarial attacks and model
robustness can be defined over different norms. We refer to
XD and XS as data idiosyncrasy.

Several related assumptions are:

A1: For a Model Θ, we have:

α(f(XG + XD;Θ),y) > α(f(XG ;Θ),y) (2)

which can be intuitively understood as, there exists some
association between XD and y that cannot be described by
XG and y. This assumption can be verified by empirical
observations such as (Jo and Bengio 2017; Wang et al.
2019b).

A2: ||xD|| � ||xG || and ||xS || � ||xG ||, which can intu-
itively understood as the magnitude of XD and XS are
negligible. We believe we can safely assume so because
both XD and XS are imperceptible to humans.

With testing data 〈Xtest,ytest〉, the accuracy of the model
Θ is denoted as:

α(f(Xtest;Θ),ytest) (3)

1one good illustrative example might be the “wearing glasses”
signal discussed in Fig.1 in (Wang et al. 2017)



and we consider the following definition of the accuracy-
independent robustness:
Exε≤C [α(f(X

test + Xε;Θ),ytest)]− α(f(Xtest;Θ),ytest)
(4)

where C is the maximal perturbation considered. The evalua-
tion score is upper bounded by 0 and lower bounded by -1.
The higher the score is, the more robust the evaluated model
is.

Further, we want to emphasize a seemingly under-
appreciated point: some literature appears to de-
scribe the training process of a neural network as:

Θ = argmin
Θ

l(f(Xtrain;Θ),ytrain), (5)

however, in practice, deep learning models are usually trained
with a regularization operating on empirical performance:

Θ = argmax
Θ′

α(f(Xval;Θ′),yval)

s.t. Θ′ = argmin
Θ′′

l(f(Xtrain;Θ′′),ytrain)
(6)

We define Xtrain and Xval from the same distribution as:
||α(f(Xtrain

D ;Θ),ytrain)− α(f(Xval
D ;Θ),yval)|| < ε

where ε is a small scalar. Intuitively: Xtrain and Xval are from
the same distribution/domain means a model Θ can learn
similar statistical signals from non-semantic components of
the data: Xtrain

D and Xval
D .

Therefore, when Xtrain and Xval are from the same distri-
bution/domain, Optimization 6 results in the model ΘX =
Θ[XG+XD]. In other words, the trained model from Optimiza-
tion 6 learns to exploit XD, when Xtrain and Xval are from
the same distribution/domain.

By considering the data idiosyncrasy, many interesting
empirical deep learning results can be straightforwardly ex-
plained: the capacity to reduce training error to zero even
when the labels are shuffled (Zhang et al. 2017) can be seen
as a result of exploiting XS ; the tendency of CNN’s to learn
superficial statistics (Jo and Bengio 2017) can been seen as a
result of exploiting XD.

As one may expect, the phenomenon of adversarial sam-
ples (Szegedy et al. 2013) results from perturbing XD that
are exploited by the trained deep learning models. Similarly,
the performance drop when a well-behaved model is applied
out-of-domain (e.g. (Rosenfeld, Zemel, and Tsotsos 2018;
Wang, Sun, and Xing 2019)) is because cross-domain data
does not share the signals of XD.

As an aside, one may ask why Optimization 6 will prefer
to learn signals from XG and XD, instead of memorizing
XS as a model will do in the label-shuffled case (Zhang et
al. 2017). We believe such a preference is due to a neural
network’s tendency to learn simpler functions. One may refer
to relevant discussions such as (Soudry, Hoffer, and Srebro
2017; Neyshabur et al. 2017; Poggio et al. 2017). These
discussions are beyond the scope of this paper.

In addition to the above explanation, this new generaliza-
tion regime allows us to reiterate the main result in (Tsipras
et al. 2019). Instead of a discussion relies on the specific
design of data, our main result is applicable generally to any
data and any model that exploits data idiosyncrasy.

Remark 1. With Assumptions A1 and A2, for two models Θi

and Θj with equivalent capacity to apply semantically mean-
ingful relationships, XG (i.e. f(XG ,Θi) = f(XG ,Θj)),
there is a trade-off between the model’s accuracy (as de-
fined in 3) and the model’s robustness (as defined in 4, when
C ≤ maxx ||xD||)

Improving Robustness by Perturbing Weights
In this section, we are interested in improving a model’s
robustness by forcing the model to ignore XD, which will
result in drop of accuracy. Within the scope of this paper, we
are interested in the methods that operate on trained models
by perturbing weights, instead of re-training the model, given
the usefulness of improving the robustness of an existing
model without extensive computational resources.

To proceed with the theoretical discussion, we work on an
intermediate target variable t as a replacement of y to free our
study from cross-entropy loss to the simpler regression loss.
One can consider t as the golden standard logits generated
by the last layer of the network that our model is optimized
to learn. Despite the simplicity we introduced by studying t,
our empirical results presented later indicate the connection
between cross-entropy loss with y and the regression loss
with t. The connection is also discussed previously by Bishop
(1995), who also first used regression loss for derivations. As
we do not assume a specific definition of regression loss, we
study both the absolute loss (i.e. ||f(X;Θ)− t||11 ) and the
MSE loss (i.e. ||f(X;Θ)− t||22 ). For K-class classification
problem, we use tk to denote the kth class regression target,
and we use Θk to denote corresponding model parameters,
where Θ = ∪Kk=1Θ

k and ∪ denotes the union operation.
Lemma 1. With Assumption A2, if we have

Θ[XG+XD] = argmin
Θ

K∑
k=1

||f(XG + XD;Θ
k)− tk||11

(7)
and

Θ[XG ] = argmin
Θ

K∑
k=1

||f(XG ;Θk)− tk||11, (8)

then Θ[XG ] is a shrinkage version of Θ[XG+XD] in terms
of shrinking the element-wise `1 norm of Θ[XG+XD].

The proof uses the Taylor series to expand f(XG +
XD;Θ

k) as powers of XD and then the triangle inequal-
ity to separate XD from the remaining terms. The complete
proof is shown in the Appendix.
Lemma 2. Regarding XD as a random variable, with as-
sumptions A2, E[XD] = 0, and E[X2

D] <∞, if we have

Θ[XG+XD] = argmin
Θ

K∑
k=1

||f(XG + XD;Θ
k)− tk||22

and

Θ[XG ] = argmin
Θ

K∑
k=1

||f(XG ;Θk)− tk||22,

then Θ[XG ] is a shrinkage version of Θ[XG+XD] in terms
of shrinking the Frobenius norm ||Θ[XG+XD]||F .



The proof is similar to the previous one with an additional
step of integrating out the random variable. It is also shown
in the Appendix.

The above two lemmas suggest: given a trained model
Θ[XG+XD] from Optimization 6, a more robust version of
this model can be found as a result of shrinking Θ[XG+XD]

following certain manners, but this resulting new model will
have lower prediction accuracy as it exploits XD less.

As our theoretical study is designed for general classifiers
and general data, we do not have further theoretical guid-
ance for universally applicable methods that serve as the
best shrinking methods to improve the robustness of trained
models, just as Shafahi et al. (2019) argues: it is impossi-
ble to analyze the distribution of real-world data. However,
based on our lemmas, we can propose the following simple
heuristic methods that perturbs the neural networks’ fully
connected layer (denoted as θ):

M1: We remove the columns (or rows) i.e., the output (or in-
put) dimension of θ, that are activated with low frequency
when training data is passed through the final trained
model, resulting in a model with less `∞ (or `1) matrix
norm, thus, less element-wise `1 norm, of a fully connected
layer (or if the fully connect layer is the uppermost layer)

M2: We remove the trailing singular values of θ by setting
them to zeros, producing a model with a reduced Frobenius
norm.

M3: We apply both M1 and M2.

There exist several works that regularize a neural network
for smaller norms of weights, such as weight decay (Krogh
and Hertz 1992; Zhang et al. 2019), regularizing Jacobian
matrix (Sokolić et al. 2017), progressive pruning (Guo et al.
2018), or even dropout (Srivastava et al. 2014). In compari-
son, a distinct advantage of our methods is that we directly
work on trained networks, while other regularization methods
usually require training the model.

We intentionally prioritize the simplicity of our proposed
methods for two reasons: 1) we believe simpler methods tend
to have more practical value because they can be more easily
used by practitioners with less related experience; 2) as these
methods and following experiments mainly serve as verifi-
cation of our theoretical study, we limit the complexity of
our proposed methods to eliminate potential extra influences
introduced by sophisticated heuristics.

Experiments
Our experiments serve two goals: 1) to verify the main the-
oretical argument of this paper: these exists a trade-off be-
tween a given neural network’s accuracy and robustness;
2) to demonstrate the effectiveness of our proposed simple
methods in improving the robustness of a network.

We do not compare our methods to other existing adver-
sarial defense methods for several reasons: 1) the main theo-
retical argument can be well justified only with comparisons
towards the original model; 2) even if our methods result
in less robust models than what other adversarial defense
methods can achieve, our methods still have the distinct ad-
vantages of simplicity. For example, this simplicity allows us

to experiment with full ImageNet data set and giant models
such as ResNet. As noted by Cohen, Rosenfeld, and Kolter
(2019), no other adversarial defense methods have demon-
strated effectiveness on the full ImageNet scale.

Robustness Against Adversarial Attacks
Experimental Setup To evaluate the performance of meth-
ods M1-M3, we sequentially reduce p% (p = 0, 1, 2, . . . 99)
components of weights θ. Specifically: for M1, we discard
the columns that are active (have non-zero values) less than
p% of the time when training samples are passed through the
model; for M2, we discard the p% trailing singular values by
setting them to zeros and then reconstruct the layer; for M3,
we apply M1 and M2 simultaneously.

We consider three attack methods: FGSM (Goodfellow,
Shlens, and Szegedy 2014), DeepFool (Moosavi-Dezfooli,
Fawzi, and Frossard 2016), and C&W (Carlini and Wagner
2017b). We use the default parameters in Foolbox (Rauber,
Brendel, and Bethge 2017). Our experiments show that these
default parameters are effective enough in most cases.

We experiment with three data sets: MNIST (LeCun
1998), Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017),
and CIFAR-10 (Krizhevsky and Hinton 2009). We used con-
volutional neural networks that have been demonstrated with
reasonable high testing accuracy in these data sets (95%+ on
MNIST, 91%+ on Fashion-MNIST, 91%+ on CIFAR-10) as
baseline model for our experiment.

Robustness Against Adversarial Attacks of the Original
Models Our first experiment focuses on the resilience of
weights-perturbed network towards the adversarial exam-
ples generated according to the original model. We start
with a neural network trained according to Optimization
6 with reasonably high validation set accuracy as a Model
Θ 〈Xtest,ytest〉, then we generate the adversarial examples
〈Xadv(Θ),ytest〉 according to the trained model, then we
apply our method to get a sequence of models Θp (p =
1, 2, . . . 99) and test these models Θp over the generated ad-
versarial examples.

The results are shown in Figure 1. These figures show the
curve of prediction accuracy of adversarial examples (Y-axis)
over the maximum `∞-norm perturbation allowed between
the adversarial examples and the original image (X-axis). We
show the changes of accuracy as we increase p for different
data/model and different attack methods.

We notice that these figures tend to confirm our main the-
oretical justification by showing that the drop of a model’s
accuracy resulting from reduced dependence on data idiosyn-
crasy can result in the improvement of its robustness. Re-
markably, we notice that a slight sacrifice of the accuracy
can sometimes lead to huge improvements in the robustness.

We notice that our methods, in general, behave better
against C&W attacks than against other attacks across many
of the settings. We believe this is a positive sign as C&W at-
tacks are often regarded as the most powerful attack methods
because they search for the perturbation under the constraint
that the perturbation will mislead the classifier. According
to our generalization regime considering models’ abilities in
exploiting data idiosyncrasy, there are almost no effective
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Figure 1: Illustration of the accuracy of the models as a function of the bound of various adversarial attacks. Methods M1-M3
reduce the norm of the parameters of the network (by discarding p percentage of weights according to M1-M3). When the
methods discard too many elements and become dysfunctional, both robustness and accuracy drop significantly.

defenses against C&W attacks unless the model discards the
information learned through data idiosyncrasy. Therefore, as
our methods perturb the weights, we can observe that the
evaluated robustness increases and the accuracy decreases.

Interestingly, we notice that our methods are ineffective
against DeepFool attacks in the MNIST and Fashion-MNIST
case, but help in the CIFAR-10 case. Although different meth-
ods behave differently in these settings, the overall perfor-
mance supports our main claim made in Remark 1.

Robustness Against New Adversarial Attacks We con-
tinue to study whether our simple methods can result in more
robust models against attacks targeting the new models. For
the evaluation, we consider the following metric (similar to
NIP2018 adversarial vision challenge):
• Given model Θp, we apply our attack methods to generate

adversarial examples Xadv(Θp).
• For every sample i, we use our model to predict ŷi =
f(Xadv

i (Θp);Θp)

• For every sample i, we consider the distance defined as:

di =

{
||Xadv

i (Θp)−Xtest
i ||22 if ŷi 6= ytesti ∩ yi = ytest

i

0 otherwise

• We report the mean as all di across all the samples as the
final testing score. Higher score indicates a better model.
We report our results with this evaluation metric in Table 1

when methods M1-M3 are applied with p = 1, 2, . . . , 5. The
scores where our methods improve upon the original scores
are shown in bold. Our methods improve the performance in
most cases. Interestingly, methods M1-M3 all help the scores

on CIFAR-10, and the improvements on M2 and M3 are quite
significant in comparison to others. In the MNIST case, both
M2 and M3 work well, and M1 shows a trend in improving
the performance as p increases. In the Fashion-MNIST case,
only M3 improves the performance. Although there are sev-
eral cases where our methods do not help, we believe the
main message of this paper is well justified by these exper-
iments: we can improve the robustness of a neural network
by lowering the accuracy by perturbing the weights, and
even straightforward methods such as M1-M3 can achieve
the goal.

Robustness Test in Real-world Corruption on
ImageNet Data
Now we consider another setting of model robustness with
the help of ImageNet-C data set introduced by Hendrycks
and Dietterich (2019). ImageNet-C is a benchmark data set
that is an extension of the popular ImageNet data set (Deng
et al. 2009) by introducing a total of 75 sets (15 types × 5
levels) of corrupted version of ImageNet validation data.

We experiment with two popular network architectures
that have been reported with reasonably high accuracy on the
original ImageNet data set: AlexNet (Krizhevsky, Sutskever,
and Hinton 2012) and ResNet (He et al. 2016). We consider
the 18-layer architecture of ResNet, denoted ResNet18. As
our methods conveniently allow us to work with pre-trained
weights, we begin with the existing weights for AlexNet and
ResNet and do not perform further fine-tuning for fair com-
parison. For AlexNet, our method is applied to the second-to-
last layer, and for ResNet, our method is applied to the last
layer as this is the only full-connected layer in ResNet.

We first introduce the evaluation metric: with t denoting



Score according to percentage of weights perturbed
Dataset Method 0% 1% 2% 3% 4% 5%

MNIST
M1

14.2297
+0.0548 +0.0361 -0.3864 -0.0901 +0.0254

M2 +0.0889 +0.7655 -0.0112 -0.5397 +0.0862
M3 +0.5176 +0.8347 -0.2603 -0.3924 -0.0806

Fashion
MNIST

M1
297.9973

+2322.9249 -64.3923 -71.1064 +397.8617 +59.3002
M2 +376.8122 +97.5650 +757.4839 -55.7828 +591.4694
M3 +326.9057 +81.8152 +206.2184 -63.1231 +430.9850

Cifar-10
M1

329007.4147
+3.3899 0.0000 -0.0034 -93.0458 -191.7609

M2 +29531.7244 +29531.7244 +30348.6489 +29551.9851 +29572.9443
M3 +29531.7244 +29418.0512 +29418.0497 +29531.7244 +29394.3522

Table 1: The change in the robustness score after perturbing the weights of the original model to various degrees.

the type of corruption and l denoting the level of corruption,
we have the corrupted data denoted as 〈XC

t,l,y
test〉, as de-

fined by (Hendrycks and Dietterich 2019), the Relative mean
Corruption Error RmCE of Model Θ is:

RmCE(Θ) =
1

15

15∑
t=1

δ(Θ)

δ(ΘAlexNet)

where

δ(·) =
5∑
l=1

(α(f(Xtest; ·),ytest)− α(f(XC
t,l; ·),ytest))

With this evaluation metric, the evaluation of model’s ro-
bustness will be independent of the model’s accuracy.

Further, we report the RmCE(ΘAlexNet)−RmCE(Θ) as
the measure of robustness to center this metric of the baseline
model AlexNet to be zero. For the same reason, we report

α(f(Xtest;Θ),ytest)− α(f(Xtest;ΘAlexNet),y
test)

α(f(Xtest;ΘAlexNet),ytest)

as the measure of accuracy.
With our measures of robustness and accuracy, we can plot

the trade-off between robustness and accuracy of these mod-
els in Figure 2, where information of SqueezeNet, VGG11,
VGG19, and ResNet50 are from (Hendrycks and Dietterich
2019) for reference. The exact coordinates used to plot the
figure are shown in the Appendix.

As we can see, no model is both more robust and more ac-
curate than AlexNet at the same time. SqueezeNet (Iandola et
al. 2016) and VGG (Simonyan and Zisserman 2014) improve
upon AlexNet’s accuracy at a relatively big loss of robust-
ness. ResNet50 (He et al. 2016) is likely a preferred model
as it increases the accuracy by a relatively large margin, but
only decreases the robustness by a small gap.

Our methods perturb the weights of a model to trade
the accuracy for robustness. Remarkably, we notice that
a resulting model AlexNet(M1P30) leads to the improve-
ment of robustness with almost no drop of accuracy. Thus,
AlexNet(M1P30) should be preferred over AlexNet in gen-
eral, and may also be preferred over ResNet50, depending on
the practical needs.
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Figure 2: Robustness-accuracy trade-off of the vision models
and their weight-perturbed versions by our proposed methods:
while there is no model that can be simultaneously more
(or equally) robust and accurate than AlexNet, our method
generates a version of AlexNet that is more robust and almost
equally accurate.

Discussion
Does this paper suggest we will never have a robust and
accurate model? No. While this paper is discusses the ex-
isting trade-off between a neural network’s robustness and
accuracy, our discussion does not deny the future possibility
of a model that is both robust and accurate, because models
can break the prerequisites and assumptions of Remark 1. A
crucial assumption to break is that models perceive the data
at a different granularity than humans. The trade-off exists as
long as the model exploits XD. Therefore, one future direc-
tion is to encourage models to analyze the data at the human
level, as argued by (Nakkiran 2019), and another direction is
to force the model to discard the information learned while
exploiting data idiosyncrasy (Wang et al. 2019a).

The methods we introduced in this paper (M1-M3) are
straightforward, as we prioritized simplicity in a theoreti-
cal study. We believe more sophisticated methods to reduce
the norms of weights after training can lead to more robust
models with slighter loss of accuracy. For example, good
empirical performance has been demonstrated on specific



applications with methods that remove the weights under
the guidance of additional information (Xiao et al. 2016;
Wang, Wu, and Xing 2019).

Conclusion
In this paper, we analyzed the implications of data idiosyn-
crasy as a source of adversarial attack vulnerability. To study
this trade-off, we introduced a new generalization regime
that considers model’s ability to exploit data idiosyncrasy,
which means the model can learn to utilize the superficial
information of data imperceptible to humans, leaving it vul-
nerable to adversarial attacks. With this regime, we formally
demonstrate the robustness-accuracy trade-off when a model
is trained to exploit data idiosyncrasy. Further, our theoreti-
cal analysis directly leads to simple methods to improve the
model’s robustness for accuracy.

Our experiments support our theoretical argument on the
trade-off and also demonstrate the effectiveness of our pro-
posed methods against several adversarial attacks. We ap-
ply our methods to improve the robustness of AlexNet and
ResNet for corrupted ImageNet classification. Remarkably,
no models tested (including variations of ResNet, VGG,
and SqueezeNet) are simultaneously more robust and ac-
curate than AlexNet. Our method finds a perturbed version
of AlexNet (i.e. AlexNet(M1P30)) that is more robust and
almost as accurate as the original AlexNet. We hope that the
methods presented in this paper will be used as a low-cost
way of increasing robustness of existing models. Ultimately,
we believe that this perspective, of data idiosyncrasy as a
fundamental challenge to adversarial robustness, can provide
an effective framework for developing for robust models in
the future.
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Appendix
Proof of Lemma 4.1

Inspired by (Bishop 1995), we start with the Taylor series of
f(XG + XD,Θ) in powers of XD, which is:

f(XG + XD,Θ[XG+XD])

= f(XG ,Θ[XG+XD])

+ XD
∂f(XG + XD,Θ[XG+XD])

∂(XG + XD)
|XD=0

+O(X2
D),

where we can safely discard higher order terms following
assumption A2.

Inspired by (Xu, Caramanis, and Mannor 2009), we use
triangular inequality to expand the loss

K∑
k=1

||f(XG + XD,Θ
k
[XG+XD])− tk||11

into its upper bound (Function 1):

K∑
k=1

||f(XG ,Θ
k
[XG+XD])− tk||11 + ||XD(

∂f(XG ,Θ
k
[XG+XD])

∂(XG)
)||11

Thus, comparing the above function to

K∑
k=1

||f(XG ,Θ
k
[XG ])− tk||11,

and notice that
∂f(XG ,Θ

k
[XG+XD])

∂(XG)
denotes Θk

[XG+XD] by

definition.
Function 1 can be seen as a training process to force the

model Θk
[XG+XD] to operate only on XG (as the model

Θk
[XG ] does) by shrinking the element-wise `1 norm of

Θk
[XG+XD].
Further, as Θ[XG+XD] = ∪Kk=1Θ

k
[XG+XD], forcing the

model to operate on XG can be achieved by shrinking the
element-wise `1 norm of Θ[XG+XD]

Proof of Lemma 4.2
Inspired by (Bishop 1995), we start with the Taylor series of
f(XG + XD,Θ) in powers of XD, which is:

f(XG + XD,Θ[XG+XD])

= f(XG ,Θ[XG+XD])

+ XD
∂f(XG + XD,Θ[XG+XD])

∂(XG + XD)
|XD=0

+O(X2
D),

where we can safely discard higher order terms following
assumption A2.

Thus, we can expand the loss function

K∑
k=1

||f(XG + XD,Θ
k
[XG+XD])− tk||22

into
K∑

k=1

||f(XG ,Θ
k
[XG+XD])− tk||22

+ 2XD
∂f(XG ,Θ

k
[XG+XD])

∂(XG)
(f(XG ,Θ

k
[XG+XD])− tk)

+ X2
D(

∂f(XG ,Θ
k
[XG+XD])

∂(XG)
)2

We then integrate over the random variable XD with the
assumption that E[XD] = 0, we have the new form of the
loss function: (Function 2)

K∑
k=1

||f(XG ,Θ
k
[XG+XD])− tk||22

+E[X2
D](

∂f(XG ,Θ
k
[XG+XD])

∂(XG)
)2

Thus, comparing the above function to

K∑
k=1

||f(XG ,Θ
k
[XG ])− tk||22,

and notice that
∂f(XG ,Θ

k
[XG+XD])

∂(XG)
denotes Θk

[XG+XD] by

definition.
Function 2 can be seen as a training process to force the

model Θk
[XG+XD] to operate only on XG (as the model

Θk
[XG ] does) by shrinking the element-wise `2 norm of

Θk
[XG+XD].
Further, as Θ[XG+XD] = ∪Kk=1Θ

k
[XG+XD], forcing the

model to operate on XG can be achieved by shrinking the
element-wise `2 norm, i.e. Frobenius norm, of Θ[XG+XD]



Accuracy
Coordinate

Robustness
Coordinate

Details (Average Accuracy)
Noise Blur Weather Digital

AlexNet 0.000 0.000 0.1187 0.3187 0.2015 0.277
AlexNet(M1P30) -0.002 0.013 0.1182 0.3459 0.2027 0.2858
AlexNet(M3P50) -0.106 0.002 0.0964 0.3011 0.1675 0.2459

ResNet18 0.151 0.022 0.1727 0.3625 0.2657 0.2955
ResNet(M1P25) 0.148 -0.112 0.1729 0.3798 0.27 0.3068
ResNet(M2P75) 0.060 -0.142 0.154 0.3196 0.2357 0.2605

SqueezeNet 0.030 -0.179 from (Hendrycks and Dietterich 2019)
VGG-11 0.221 -0.233 from (Hendrycks and Dietterich 2019)
VGG-19 0.281 -0.229 from (Hendrycks and Dietterich 2019)

ResNet-50 0.347 -0.039 from (Hendrycks and Dietterich 2019)

Table 1: The exact coordinates used to plot Figure 2.
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